These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18350012)

  • 21. Amorphous silicon waveguides and light modulators for integrated photonics realized by low-temperature plasma-enhanced chemical-vapor deposition.
    Cocorullo G; Corte FG; Rendina I; Minarini C; Rubino A; Terzini E
    Opt Lett; 1996 Dec; 21(24):2002-4. PubMed ID: 19881873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of the modal birefringence of single-mode K(+) ion-exchanged planar waveguides with polarimetric interferometry.
    Qi ZM; Itoh K; Murabayashi M
    Appl Opt; 2000 Nov; 39(31):5750-4. PubMed ID: 18354573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UV-Protective TiO
    Xu J; Nagasawa H; Kanezashi M; Tsuru T
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42657-42665. PubMed ID: 30418737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of modal birefringence in optical waveguides based on the Mach-Zehnder interferometer.
    Zhong ZB; Fu ZC; Shi JD; Tan QL; Huang WB; Huang XG
    Rev Sci Instrum; 2014 May; 85(5):053104. PubMed ID: 24880350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides.
    Ng DK; Wang Q; Wang T; Ng SK; Toh YT; Lim KP; Yang Y; Tan DT
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21884-9. PubMed ID: 26375453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GaN microring waveguide resonators bonded to silicon substrate by a two-step polymer process.
    Hashida R; Sasaki T; Hane K
    Appl Opt; 2018 Mar; 57(9):2073-2079. PubMed ID: 29603996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New design and analysis of Bragg grating waveguides.
    Ogawa K; Guan N; Goi K; Sakuma K; Tan YT; Yu MB; Teo SH; Lo GQ
    Opt Express; 2010 Feb; 18(3):2002-9. PubMed ID: 20174030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective growth of titanium dioxide by low-temperature chemical vapor deposition.
    Reinke M; Kuzminykh Y; Hoffmann P
    ACS Appl Mater Interfaces; 2015 May; 7(18):9736-43. PubMed ID: 25901661
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress-induced optical effects in Ag(+)-Na(+) ion-exchanged glass waveguides.
    Gonella F
    Opt Lett; 1992 Dec; 17(23):1667-9. PubMed ID: 19798278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass.
    Liu Q; Gross S; Dekker P; Withford MJ; Steel MJ
    Opt Express; 2014 Nov; 22(23):28037-51. PubMed ID: 25402044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.
    Yliniemi S; West BR; Honkanen S
    Appl Opt; 2005 Jun; 44(16):3358-63. PubMed ID: 15943272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mid-infrared chemical sensors utilizing plasma-deposited fluorocarbon membranes.
    Dobbs GT; Balu B; Young C; Kranz C; Hess DW; Mizaikoff B
    Anal Chem; 2007 Dec; 79(24):9566-71. PubMed ID: 18020310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semiconductor hollow optical waveguides formed by omni-directional reflectors.
    Lo SS; Wang MS; Chen CC
    Opt Express; 2004 Dec; 12(26):6589-93. PubMed ID: 19488309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infrared hollow glass waveguides fabricated by chemical vapor deposition.
    Matsuura Y; Harrington JA
    Opt Lett; 1995 Oct; 20(20):2078-80. PubMed ID: 19862256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.
    Ma J; Povinelli ML
    Opt Express; 2009 Sep; 17(20):17818-28. PubMed ID: 19907569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stress-birefringence reduction in elliptical-core fibers under ultraviolet irradiation.
    Wong D; Poole SB; Sceats MG
    Opt Lett; 1992 Dec; 17(24):1773-5. PubMed ID: 19798312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensitive measurement of stress birefringence of fused silica substrates with cavity ring-down technique.
    Xiao S; Li B; Cui H; Wang J
    Opt Lett; 2018 Feb; 43(4):843-846. PubMed ID: 29444008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. UV-induced modification of stress distribution in optical fibers and its contribution to Bragg grating birefringence.
    Belhadj N; Park Y; Larochelle S; Dossou K; AzaƱa J
    Opt Express; 2008 Jun; 16(12):8727-41. PubMed ID: 18545586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and optical characterization of self-assembled Ge nanocrystal layers grown by plasma-enhanced chemical vapor deposition.
    Saeed S; Buters F; Dohnalova K; Wosinski L; Gregorkiewicz T
    Nanotechnology; 2014 Oct; 25(40):405705. PubMed ID: 25224861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.