BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 18350186)

  • 1. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2.
    Wu T; Xiao W; Jin X; Liu C; Wang D; Chen GZ
    Phys Chem Chem Phys; 2008 Apr; 10(13):1809-18. PubMed ID: 18350186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemistry of niobium(V) in sulfuric and methanesulfonic acids: formation of the Nb3O2(SO4)6(H2O)(3)(5-) cluster and designed electrochemical generation of "Nb3O2" core clusters by double potential pulse electrolysis.
    May M; Gantt M; Hoadley C; Batten T; Sayers W; Katovic V
    Inorg Chem; 2003 Nov; 42(22):7137-47. PubMed ID: 14577782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niobium oxide dispersed on a carbon-ceramic matrix, SiO2/C/Nb2O5, used as an electrochemical ascorbic acid sensor.
    Arenas LT; Villis PC; Arguello J; Landers R; Benvenutti EV; Gushikem Y
    Talanta; 2010 Nov; 83(1):241-8. PubMed ID: 21035670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Perovskitization"-assisted electrochemical reduction of solid TiO2 in molten CaCl2.
    Jiang K; Hu X; Ma M; Wang D; Qiu G; Jin X; Chen GZ
    Angew Chem Int Ed Engl; 2006 Jan; 45(3):428-32. PubMed ID: 16342306
    [No Abstract]   [Full Text] [Related]  

  • 7. Interface stoichiometry and structure in anodic niobium pentoxide.
    Olszta MJ; Dickey EC
    Microsc Microanal; 2008 Oct; 14(5):451-8. PubMed ID: 18793489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas.
    Karlinsey RL; Hara AT; Yi K; Duhn CW
    Biomed Mater; 2006 Mar; 1(1):16-23. PubMed ID: 18458381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.
    Rozendal RA; Hamelers HV; Molenkamp RJ; Buisman CJ
    Water Res; 2007 May; 41(9):1984-94. PubMed ID: 17343894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry.
    Mancier V; Daltin AL; Leclercq D
    Ultrason Sonochem; 2008 Mar; 15(3):157-63. PubMed ID: 17462940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid material assembled by anthocyanins from açaí fruit intercalated between niobium lamellar oxide.
    Teixeira-Neto AA; Shiguihara AL; Izumi CM; Bizeto MA; Leroux F; Temperini ML; Constantino VR
    Dalton Trans; 2009 Jun; (21):4136-45. PubMed ID: 19452062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. La(0.4)Ba(0.6)Fe(0.8)Zn(0.2)O(3-delta) as cathode in solid oxide fuel cells for simultaneous NO reduction and electricity generation.
    Zhou R; Bu Y; Xu D; Zhong Q
    Environ Technol; 2014; 35(5-8):925-30. PubMed ID: 24645475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of toluene and water to methylcyclohexane and oxygen using niobium-doped strontium titanate photoelectrodes.
    Kalousek V; Wang P; Minegishi T; Hisatomi T; Nakagawa K; Oshima S; Kobori Y; Kubota J; Domen K
    ChemSusChem; 2014 Sep; 7(9):2690-4. PubMed ID: 25044371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new anode material for oxygen evolution in molten oxide electrolysis.
    Allanore A; Yin L; Sadoway DR
    Nature; 2013 May; 497(7449):353-6. PubMed ID: 23657254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ and real-time monitoring of oxide growth in a few monolayers at surfaces of platinum nanoparticles in aqueous media.
    Imai H; Izumi K; Matsumoto M; Kubo Y; Kato K; Imai Y
    J Am Chem Soc; 2009 May; 131(17):6293-300. PubMed ID: 19358577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-electrochemical degradation of some chlorinated organic compounds on n-TiO2 electrode.
    Ohsaka T; Shinozaki K; Tsuruta K; Hirano K
    Chemosphere; 2008 Nov; 73(8):1279-83. PubMed ID: 18718634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of oxidised aluminium powder: validation of a new anodic oxidation bench.
    Gascoin N; Gillard P; Baudry G
    J Hazard Mater; 2009 Nov; 171(1-3):348-57. PubMed ID: 19576691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometry, vibrational modes, and structure of niobium(V) oxosulfato complexes in the molten Nb(2)O(5)-K(2)S(2)O(7)-K(2)SO(4) system studied by Raman spectroscopy.
    Paulsen AL; Borup F; Berg RW; Boghosian S
    J Phys Chem A; 2010 Jul; 114(28):7485-93. PubMed ID: 20575570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.