BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18350872)

  • 1. Speciation of Cu in a contaminated agricultural soil measured by XAFS, micro-XAFS, and micro-XRF.
    Strawn DG; Baker LL
    Environ Sci Technol; 2008 Jan; 42(1):37-42. PubMed ID: 18350872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of copper in soils using X-ray absorption spectroscopy.
    Strawn DG; Baker LL
    Environ Pollut; 2009 Oct; 157(10):2813-21. PubMed ID: 19446385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques.
    Yang J; Liu J; Dynes JJ; Peak D; Regier T; Wang J; Zhu S; Shi J; Tse JS
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2943-54. PubMed ID: 24170498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface complexation of copper(II) on soil particles: EPR and XAFS studies.
    Flogeac K; Guillon E; Aplincourt M
    Environ Sci Technol; 2004 Jun; 38(11):3098-103. PubMed ID: 15224741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ speciation studies of copper-humic substances in a contaminated soil during electrokinetic remediation.
    Liu SH; Wang HP
    J Environ Qual; 2004; 33(4):1280-7. PubMed ID: 15254109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands.
    Ryser AL; Strawn DG; Marcus MA; Fakra S; Johnson-Maynard JL; Möller G
    Environ Sci Technol; 2006 Jan; 40(2):462-7. PubMed ID: 16468390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations.
    Mamindy-Pajany Y; Sayen S; Mosselmans JF; Guillon E
    Environ Sci Technol; 2014 Jul; 48(13):7237-44. PubMed ID: 24899255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper and zinc in vineyard and orchard soils at millimeter vertical resolution.
    Sonoda K; Hashimoto Y; Wang SL; Ban T
    Sci Total Environ; 2019 Nov; 689():958-962. PubMed ID: 31280176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranium speciation as a function of depth in contaminated hanford sediments--a micro-XRF, micro-XRD, and micro- and bulk-XAFS study.
    Singer DM; Zachara JM; Brown GE
    Environ Sci Technol; 2009 Feb; 43(3):630-6. PubMed ID: 19244994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insight into the interactions of EDDS with copper in the rhizosphere of polluted soils.
    Zhao YP; Cui JL; Chan TS; Chen YH; Li XD
    Environ Pollut; 2020 Dec; 267():115453. PubMed ID: 33254714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of soil phosphorus speciation in mid-Atlantic soils using synchrotron-based microspectroscopic techniques.
    Gamble AV; Northrup PA; Sparks DL
    J Environ Qual; 2020 Jan; 49(1):184-193. PubMed ID: 33016369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation of Zn and Cd in sierozem soil, northwest China: bulk EXAFS and micro synchrotron X-ray fluorescence.
    Zhao X; Takahashi Y; Wu W; Liu C; Fan Q
    Environ Sci Process Impacts; 2023 May; 25(5):954-963. PubMed ID: 37052246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.
    Perlatti F; Otero XL; Macias F; Ferreira TO
    Sci Total Environ; 2014 Dec; 500-501():91-102. PubMed ID: 25217748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.
    Voegelin A; Jacquat O; Pfister S; Barmettler K; Scheinost AC; Kretzschmar R
    Environ Sci Technol; 2011 Jan; 45(1):255-61. PubMed ID: 21142002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Cu distribution in clay-sized soil aggregates by NanoSIMS and micro-XRF.
    Li Q; Hu X; Hao J; Chen W; Cai P; Huang Q
    Chemosphere; 2020 Jun; 249():126143. PubMed ID: 32062557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions.
    Kumpiene J; Mench M; Bes CM; Fitts JP
    Environ Pollut; 2011 Jun; 159(6):1536-42. PubMed ID: 21454002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution.
    Sarret G; Balesdent J; Bouziri L; Garnier JM; Marcus MA; Geoffroy N; Panfili F; Manceau A
    Environ Sci Technol; 2004 May; 38(10):2792-801. PubMed ID: 15212252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging effect on Zn retention on a calcareous soil: column experiments and synchrotron X-ray micro-spectroscopic investigation.
    Sayen S; Guillon E
    Sci Total Environ; 2014 Jul; 487():545-56. PubMed ID: 24813770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated temperature induces contrasting transformation of exogenous copper to soil solution and solid phases in an arable soil.
    Hu X; Qu C; Han Y; Sun P; Cai P; Chen W; Huang Q
    Ecotoxicol Environ Saf; 2023 Apr; 255():114744. PubMed ID: 36931086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.