These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18350881)
1. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria. Ekstrom EB; Morel FM Environ Sci Technol; 2008 Jan; 42(1):93-9. PubMed ID: 18350881 [TBL] [Abstract][Full Text] [Related]
2. Mercury methylation independent of the acetyl-coenzyme A pathway in sulfate-reducing bacteria. Ekstrom EB; Morel FM; Benoit JM Appl Environ Microbiol; 2003 Sep; 69(9):5414-22. PubMed ID: 12957930 [TBL] [Abstract][Full Text] [Related]
3. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK; Kostka JE; Frischer ME; Saunders FM Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421 [TBL] [Abstract][Full Text] [Related]
4. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area]. Chen R; Chen H; Wang DY; Xiang YP; Shen H Huan Jing Ke Xue; 2016 Oct; 37(10):3774-3780. PubMed ID: 29964408 [TBL] [Abstract][Full Text] [Related]
5. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Shao D; Kang Y; Wu S; Wong MH Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059 [TBL] [Abstract][Full Text] [Related]
6. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Drott A; Lambertsson L; Björn E; Skyllberg U Environ Sci Technol; 2007 Apr; 41(7):2270-6. PubMed ID: 17438774 [TBL] [Abstract][Full Text] [Related]
7. Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3). Benoit JM; Gilmour CC; Mason RP Appl Environ Microbiol; 2001 Jan; 67(1):51-8. PubMed ID: 11133427 [TBL] [Abstract][Full Text] [Related]
8. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Perrot V; Bridou R; Pedrero Z; Guyoneaud R; Monperrus M; Amouroux D Environ Sci Technol; 2015 Feb; 49(3):1365-73. PubMed ID: 25564955 [TBL] [Abstract][Full Text] [Related]
9. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388 [TBL] [Abstract][Full Text] [Related]
10. Mercury mobilization and speciation linked to bacterial iron oxide and sulfate reduction: A column study to mimic reactive transfer in an anoxic aquifer. Hellal J; Guédron S; Huguet L; Schäfer J; Laperche V; Joulian C; Lanceleur L; Burnol A; Ghestem JP; Garrido F; Battaglia-Brunet F J Contam Hydrol; 2015 Sep; 180():56-68. PubMed ID: 26275395 [TBL] [Abstract][Full Text] [Related]
11. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Gilmour CC; Elias DA; Kucken AM; Brown SD; Palumbo AV; Schadt CW; Wall JD Appl Environ Microbiol; 2011 Jun; 77(12):3938-51. PubMed ID: 21515733 [TBL] [Abstract][Full Text] [Related]
12. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures. Kucharzyk KH; Deshusses MA; Porter KA; Hsu-Kim H Environ Sci Process Impacts; 2015 Sep; 17(9):1568-77. PubMed ID: 26211614 [TBL] [Abstract][Full Text] [Related]
13. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. Yu RQ; Adatto I; Montesdeoca MR; Driscoll CT; Hines ME; Barkay T FEMS Microbiol Ecol; 2010 Dec; 74(3):655-68. PubMed ID: 20955196 [TBL] [Abstract][Full Text] [Related]
14. Effect of exogenous and endogenous sulfide on the production and the export of methylmercury by sulfate-reducing bacteria. Barrouilhet S; Monperrus M; Tessier E; Khalfaoui-Hassani B; Guyoneaud R; Isaure MP; Goñi-Urriza M Environ Sci Pollut Res Int; 2023 Jan; 30(2):3835-3846. PubMed ID: 35953752 [TBL] [Abstract][Full Text] [Related]
15. In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production. Randall PM; Fimmen R; Lal V; Darlington R Environ Res; 2013 Aug; 125():30-40. PubMed ID: 23768845 [TBL] [Abstract][Full Text] [Related]
16. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia. Correia RRS; Guimarães JRD Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167 [TBL] [Abstract][Full Text] [Related]
17. Mercury methylation by planktonic and biofilm cultures of Desulfovibrio desulfuricans. Lin CC; Jay JA Environ Sci Technol; 2007 Oct; 41(19):6691-7. PubMed ID: 17969682 [TBL] [Abstract][Full Text] [Related]
18. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980 [TBL] [Abstract][Full Text] [Related]
19. Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. Yin X; Wang L; Liang X; Zhang L; Zhao J; Gu B J Hazard Mater; 2022 Jul; 433():128835. PubMed ID: 35398798 [TBL] [Abstract][Full Text] [Related]
20. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate-Reducing Bacteria. Janssen SE; Schaefer JK; Barkay T; Reinfelder JR Environ Sci Technol; 2016 Aug; 50(15):8077-83. PubMed ID: 27392249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]