BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18350893)

  • 1. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.
    Duncan LK; Jinschek JR; Vikesland PJ
    Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
    Xie B; Xu Z; Guo W; Li Q
    Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.
    Dhawan A; Taurozzi JS; Pandey AK; Shan W; Miller SM; Hashsham SA; Tarabara VV
    Environ Sci Technol; 2006 Dec; 40(23):7394-401. PubMed ID: 17180994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dilution on the properties of nC₆₀.
    Chang X; Vikesland PJ
    Environ Pollut; 2013 Oct; 181():51-9. PubMed ID: 23811179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carboxylic acids on nC60 aggregate formation.
    Chang X; Vikesland PJ
    Environ Pollut; 2009 Apr; 157(4):1072-80. PubMed ID: 19054600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation behavior of aqu/nC
    Li X; Ding G; Song G; Zhuang Y; Wang C; Li R; Liu Q
    Ecotoxicol Environ Saf; 2020 Apr; 193():110332. PubMed ID: 32088550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects.
    Tong ZH; Bischoff M; Nies LF; Carroll NJ; Applegate B; Turco RF
    Sci Rep; 2016 Jun; 6():28069. PubMed ID: 27306076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives.
    Bouchard D; Ma X; Isaacson C
    Environ Sci Technol; 2009 Sep; 43(17):6597-603. PubMed ID: 19764223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenching and sensitizing fullerene photoreactions by natural organic matter.
    Kong L; Mukherjee B; Chan YF; Zepp RG
    Environ Sci Technol; 2013 Jun; 47(12):6189-96. PubMed ID: 23662979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dispersion, stability, and resuspension of C
    Ding G; Li X; Zhang J; Zhang N; Li R; Wang Y; Yang Z; Peijnenburg WJGM
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25538-25549. PubMed ID: 31267391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry.
    Isaacson CW; Bouchard D
    J Chromatogr A; 2010 Feb; 1217(9):1506-12. PubMed ID: 20070969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.
    Brant J; Lecoanet H; Hotze M; Wiesner M
    Environ Sci Technol; 2005 Sep; 39(17):6343-51. PubMed ID: 16190186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.
    Espinasse B; Hotze EM; Wiesner MR
    Environ Sci Technol; 2007 Nov; 41(21):7396-402. PubMed ID: 18044517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and properties of aqu/nC
    Li X; Ding G; Zhang J; Wang Y; Li W; Wang C; Li R; Yang Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12527-12538. PubMed ID: 32002835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water.
    Li H; Jia X; Li Y; Shi X; Hao J
    J Phys Chem B; 2006 Jan; 110(1):68-74. PubMed ID: 16471501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.