These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18350893)

  • 1. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.
    Duncan LK; Jinschek JR; Vikesland PJ
    Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.
    Xie B; Xu Z; Guo W; Li Q
    Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.
    Dhawan A; Taurozzi JS; Pandey AK; Shan W; Miller SM; Hashsham SA; Tarabara VV
    Environ Sci Technol; 2006 Dec; 40(23):7394-401. PubMed ID: 17180994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dilution on the properties of nC₆₀.
    Chang X; Vikesland PJ
    Environ Pollut; 2013 Oct; 181():51-9. PubMed ID: 23811179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of carboxylic acids on nC60 aggregate formation.
    Chang X; Vikesland PJ
    Environ Pollut; 2009 Apr; 157(4):1072-80. PubMed ID: 19054600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation behavior of aqu/nC
    Li X; Ding G; Song G; Zhuang Y; Wang C; Li R; Liu Q
    Ecotoxicol Environ Saf; 2020 Apr; 193():110332. PubMed ID: 32088550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects.
    Tong ZH; Bischoff M; Nies LF; Carroll NJ; Applegate B; Turco RF
    Sci Rep; 2016 Jun; 6():28069. PubMed ID: 27306076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives.
    Bouchard D; Ma X; Isaacson C
    Environ Sci Technol; 2009 Sep; 43(17):6597-603. PubMed ID: 19764223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenching and sensitizing fullerene photoreactions by natural organic matter.
    Kong L; Mukherjee B; Chan YF; Zepp RG
    Environ Sci Technol; 2013 Jun; 47(12):6189-96. PubMed ID: 23662979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dispersion, stability, and resuspension of C
    Ding G; Li X; Zhang J; Zhang N; Li R; Wang Y; Yang Z; Peijnenburg WJGM
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25538-25549. PubMed ID: 31267391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry.
    Isaacson CW; Bouchard D
    J Chromatogr A; 2010 Feb; 1217(9):1506-12. PubMed ID: 20070969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.
    Brant J; Lecoanet H; Hotze M; Wiesner M
    Environ Sci Technol; 2005 Sep; 39(17):6343-51. PubMed ID: 16190186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.
    Espinasse B; Hotze EM; Wiesner MR
    Environ Sci Technol; 2007 Nov; 41(21):7396-402. PubMed ID: 18044517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and properties of aqu/nC
    Li X; Ding G; Zhang J; Wang Y; Li W; Wang C; Li R; Yang Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12527-12538. PubMed ID: 32002835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water.
    Li H; Jia X; Li Y; Shi X; Hao J
    J Phys Chem B; 2006 Jan; 110(1):68-74. PubMed ID: 16471501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.