These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18351)

  • 1. A phosphorus-magnetic-resonance study of the interaction of Mg2+ with adenyl-5'-yl imidodiphosphate. Binding sites of Mg2+ ion on the phosphate chain.
    Tran-Dinh S; Roux M
    Eur J Biochem; 1977 Jun; 76(1):245-9. PubMed ID: 18351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ethylene glycol and Ca2+ on the binding of Mg2+ x adenyl-5'-yl imidodiphosphate to rabbit skeletal myofibrils.
    Johnson RE
    J Biol Chem; 1986 Jan; 261(2):728-32. PubMed ID: 3941099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Mg2+ on cardiac performance, intracellular free Mg2+ and pH in perfused hearts as assessed with 31P nuclear magnetic resonance spectroscopy.
    Barbour RL; Altura BM; Reiner SD; Dowd TL; Gupta RK; Wu F; Altura BT
    Magnes Trace Elem; 1991-1992; 10(2-4):99-116. PubMed ID: 1844566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy.
    Son TD; Roux M; Ellenberger M
    Nucleic Acids Res; 1975 Jul; 2(7):1101-10. PubMed ID: 239391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of adenylyl imidodiphosphate in the presence of Na+ + Mg2+ by (Na+ + K+)-activated ATPase.
    Schuurmans Stekhoven FM; Swarts HG; De Pont JJ; Bonting SL
    Biochim Biophys Acta; 1983 Dec; 736(1):73-8. PubMed ID: 6317029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.
    Tran-Dinh S; Neumann JM
    Nucleic Acids Res; 1977 Feb; 4(2):397-403. PubMed ID: 14328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 31P nuclear magnetic resonance of phosphonic acid analogues of adenosine nucleotides as functions of pH and magnesium ion concentration.
    Schliselfeld LH; Burt CT; Labotka RJ
    Biochemistry; 1982 Jan; 21(2):317-20. PubMed ID: 6896156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P nuclear magnetic resonance spectra of the thiophosphate analogues of adenine nucleotides; effects of pH and Mg2+ binding.
    Jaffe EK; Cohn M
    Biochemistry; 1978 Feb; 17(4):652-7. PubMed ID: 23826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 31P nuclear magnetic resonance study of phosphoribosyldiphosphate and its interaction with magnesium ions.
    Smithers GW; O'Sullivan WJ
    J Biol Chem; 1982 Jun; 257(11):6164-70. PubMed ID: 6176581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proton and metal complexes of adenyl-5'-yl imidodiphosphate.
    Pettit LD; Siddiqui KF
    Biochem J; 1976 Oct; 159(1):169-71. PubMed ID: 999636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on (K+ + H+)-ATPase III. Binding of adenylyl imidodiphosphate.
    van de Ven FJ; Schrijen JJ; de Pont JJ; Bonting SI
    Biochim Biophys Acta; 1981 Jan; 640(2):487-99. PubMed ID: 6260256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational change of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum upon binding of Ca2+ and adenyl-5'-yl-imidodiphosphate as detected by trypsin sensitivity analysis.
    Imamura Y; Saito K; Kawakita M
    J Biochem; 1984 May; 95(5):1305-13. PubMed ID: 6146606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid is superior to ethylenediamine-N,N,N',N'-tetraacetic acid for sequestering Mg2+ in 31P NMR experiments involving ATP spectra at neutral and acidic pH.
    Bass MB; Fromm HJ
    Anal Biochem; 1985 Mar; 145(2):292-301. PubMed ID: 3925810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of magnesium in binding of the nucleotide polyphosphate chain to the active site of myosin subfragment-1.
    Schaub MC; Watterson JG; Loth K; Foletta D
    Eur J Biochem; 1983 Aug; 134(2):197-204. PubMed ID: 6873060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP formation from adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analog.
    Penningroth SM; Olehnik K; Cheung A
    J Biol Chem; 1980 Oct; 255(20):9545-8. PubMed ID: 7430085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the magnesium(II) ion interact with the alpha-phosphate of adenosine triphosphate? An investigation by oxygen-17 nuclear magnetic resonance.
    Huang SL; Tsai MD
    Biochemistry; 1982 Mar; 21(5):951-9. PubMed ID: 7074064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 31P-NMR study of mono- and dimagnesium complexes of adenosine 5'-triphosphate and model systems.
    Bishop EO; Kimber SJ; Orchard D; Smith BE
    Biochim Biophys Acta; 1981 Mar; 635(1):63-72. PubMed ID: 6783084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of nucleotides to purified coupling factor-latent ATPase from Mycobacterium phlei.
    Lee SH; Kalra VK; Ritz CJ; Brodie AF
    J Biol Chem; 1977 Feb; 252(3):1084-91. PubMed ID: 14131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between Li+ and Mg2+ for ATP and ADP in aqueous solution: a multinuclear NMR study.
    Abraha A; de Freitas DE; Margarida M; Castro CA; Geraldes CF
    J Inorg Biochem; 1991 May; 42(3):191-8. PubMed ID: 1880501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between Li+ and Mg2+ for the phosphate groups in the human erythrocyte membrane and ATP: an NMR and fluorescence study.
    Mota de Freitas D; Amari L; Srinivasan C; Rong Q; Ramasamy R; Abraha A; Geraldes CF; Boyd MK
    Biochemistry; 1994 Apr; 33(14):4101-10. PubMed ID: 8155627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.