These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18351101)

  • 1. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers.
    Yoon KY; Byeon JH; Park CW; Hwang J
    Environ Sci Technol; 2008 Feb; 42(4):1251-5. PubMed ID: 18351101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.
    Sim KM; Kim KH; Hwang GB; Seo S; Bae GN; Jung JH
    Sci Total Environ; 2014 Sep; 493():291-7. PubMed ID: 24951887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior.
    Park SJ; Jang YS
    J Colloid Interface Sci; 2003 May; 261(2):238-43. PubMed ID: 16256528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Decoration of Cupric Oxide on Activated Carbon Fibers Mediated by Polydopamine for Bacterial Growth Inhibition.
    Moon H; Lee YC; Hur J
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32151011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber.
    Kim SY; Kim M; Lee S; Lee J; Ko G
    J Microbiol Biotechnol; 2012 Sep; 22(9):1288-95. PubMed ID: 22814505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Air Filters Using Natural Sea Salt Particles for Deactivating Airborne Bacterial Particles.
    Jeong SB; Heo KJ; Lee BU
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31892112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High Efficiency, Low Resistance Antibacterial Filter Formed by Dopamine-Mediated In Situ Deposition of Silver onto Glass Fibers.
    Sun Z; Kong Y; Lan L; Meng Y; You T; Pauer R; Wang H; Zhang Y; Tang M; deMello A; Liang Y; Hu J; Wang J
    Small; 2024 Apr; ():e2301074. PubMed ID: 38659180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of antibacterial and antifungal silver-coated polyurethane foams as air filtration units for the prevention of respiratory diseases.
    Paladini F; Cooper IR; Pollini M
    J Appl Microbiol; 2014 Mar; 116(3):710-7. PubMed ID: 24279872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Bioaerosol Inactivation Ability of Chitosan-Coated Antimicrobial Filters.
    Hsu YF; Chuang CY; Yang S
    Int J Environ Res Public Health; 2021 Jul; 18(13):. PubMed ID: 34281120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on NO removal of activated carbon fibers with deposited silver nanoparticles.
    Park SJ; Kim BJ
    J Colloid Interface Sci; 2005 Feb; 282(1):124-7. PubMed ID: 15576089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.
    Yoon KY; Hoon Byeon J; Park JH; Hwang J
    Sci Total Environ; 2007 Feb; 373(2-3):572-5. PubMed ID: 17173953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.
    Hwang GB; Lee JE; Nho CW; Lee BU; Lee SJ; Jung JH; Bae GN
    Sci Total Environ; 2012 Apr; 421-422():273-9. PubMed ID: 22369866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity.
    Haq S; Rehman W; Waseem M; Meynen V; Awan SU; Saeed S; Iqbal N
    J Photochem Photobiol B; 2018 Sep; 186():116-124. PubMed ID: 30036828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications.
    Singh S; Ashfaq M; Singh RK; Joshi HC; Srivastava A; Sharma A; Verma N
    N Biotechnol; 2013 Sep; 30(6):656-65. PubMed ID: 23692978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed water sterilization using silver-containing cellulose membranes.
    Sinclair T; Zieba M; Irusta S; Sebastián V; Arruebo M
    Nanotechnology; 2014 Aug; 25(30):305101. PubMed ID: 25006109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of complex fibrous media composition on their performances for VOC and particle removal.
    Rochereau A; Le Coq L; Subrenat A; Mauret E; Le Cloirec P
    Environ Technol; 2007 Dec; 28(12):1365-75. PubMed ID: 18341147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetaldehyde Adsorption Characteristics of Ag/ACF Composite Prepared by Liquid Phase Plasma Method.
    Kim BJ; An KH; Shim WG; Park YK; Park J; Lee H; Jung SC
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents.
    Vijayakumar PS; Prasad BL
    Langmuir; 2009 Oct; 25(19):11741-7. PubMed ID: 19746940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.