These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18351103)

  • 1. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.
    Kim HH; Lee H; Kim HE; Seo J; Hong SW; Lee JY; Lee C
    Water Res; 2015 Dec; 86():66-73. PubMed ID: 26093796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen.
    Lee C; Sedlak DL
    Environ Sci Technol; 2008 Nov; 42(22):8528-33. PubMed ID: 19068843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Sep; 42(18):6936-41. PubMed ID: 18853812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen.
    Lee C; Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Jul; 42(13):4921-6. PubMed ID: 18678027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction.
    Pang SY; Jiang J; Ma J
    Environ Sci Technol; 2011 Jan; 45(1):307-12. PubMed ID: 21133375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells.
    Keenan CR; Goth-Goldstein R; Lucas D; Sedlak DL
    Environ Sci Technol; 2009 Jun; 43(12):4555-60. PubMed ID: 19603676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron.
    Joo SH; Feitz AJ; Sedlak DL; Waite TD
    Environ Sci Technol; 2005 Mar; 39(5):1263-8. PubMed ID: 15787365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.
    He D; Ma J; Collins RN; Waite TD
    Environ Sci Technol; 2016 Apr; 50(7):3820-8. PubMed ID: 26958862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen.
    Wang Y; Liu L; Fang G; Wang L; Kengara FO; Zhu C
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2265-2272. PubMed ID: 29119491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction.
    Ambika S; Devasena M; Nambi IM
    J Environ Manage; 2016 Oct; 181():847-855. PubMed ID: 27397842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.
    Katsoyiannis IA; Ruettimann T; Hug SJ
    Environ Sci Technol; 2008 Oct; 42(19):7424-30. PubMed ID: 18939581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.
    Fan J; Wang H; Ma L
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16686-98. PubMed ID: 27180839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide.
    Lee H; Lee HJ; Sedlak DL; Lee C
    Chemosphere; 2013 Jul; 92(6):652-8. PubMed ID: 23433935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism for bacteriophage f2 removal by nanoscale zero-valent iron.
    Cheng R; Li G; Shi L; Xue X; Kang M; Zheng X
    Water Res; 2016 Nov; 105():429-435. PubMed ID: 27665430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution and surface chemistry of the Se(IV)-Fe(0) reactions: Effect of initial solution pH.
    Xia X; Ling L; Zhang WX
    Chemosphere; 2017 Feb; 168():1597-1603. PubMed ID: 27939658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of 17α-ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels.
    Karim S; Bae S; Greenwood D; Hanna K; Singhal N
    Water Res; 2017 Nov; 125():32-41. PubMed ID: 28826034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.