These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 18351615)

  • 1. A dynamic lattice searching method with interior operation for unbiased optimization of large Lennard-Jones clusters.
    Shao X; Yang X; Cai W
    J Comput Chem; 2008 Aug; 29(11):1772-9. PubMed ID: 18351615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic lattice searching method for fast optimization of Lennard-Jones clusters.
    Shao X; Cheng L; Cai W
    J Comput Chem; 2004 Nov; 25(14):1693-8. PubMed ID: 15362126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic lattice searching method with constructed core for optimization of large Lennard-Jones clusters.
    Yang X; Cai W; Shao X
    J Comput Chem; 2007 Jun; 28(8):1427-33. PubMed ID: 17330880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clever and efficient method for searching optimal geometries of lennard-jones clusters.
    Takeuchi H
    J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conformational analysis method for understanding the energy landscapes of clusters.
    Cheng L; Cai W; Shao X
    Chemphyschem; 2007 Mar; 8(4):569-77. PubMed ID: 17285660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry optimization of atomic clusters using a heuristic method with dynamic lattice searching.
    Lai X; Huang W; Xu R
    J Phys Chem A; 2011 May; 115(20):5021-6. PubMed ID: 21526817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast optimization of binary clusters using a novel dynamic lattice searching method.
    Wu X; Cheng W
    J Chem Phys; 2014 Sep; 141(12):124110. PubMed ID: 25273415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural variation of silver clusters from Ag13 to Ag160.
    Yang X; Cai W; Shao X
    J Phys Chem A; 2007 Jun; 111(23):5048-56. PubMed ID: 17516636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometry optimization and conformational analysis of (C60)N clusters using a dynamic lattice-searching method.
    Cheng L; Cai W; Shao X
    Chemphyschem; 2005 Feb; 6(2):261-6. PubMed ID: 15751348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel method for geometry optimization of molecular clusters: application to benzene clusters.
    Takeuchi H
    J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transition from icosahedra to decahedra of large Lennard-Jones clusters.
    Shao X; Xiang Y; Cai W
    J Phys Chem A; 2005 Jun; 109(23):5193-7. PubMed ID: 16833875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural transitions and melting in LJ(74-78) Lennard-Jones clusters from adaptive exchange Monte Carlo simulations.
    Mandelshtam VA; Frantsuzov PA; Calvo F
    J Phys Chem A; 2006 Apr; 110(16):5326-32. PubMed ID: 16623459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of different potentials on the structures and energies of clusters.
    Ma Z; Cai W; Shao X
    J Comput Chem; 2011 Nov; 32(14):3075-80. PubMed ID: 21793011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of minima hopping and evolutionary algorithms for cluster structure prediction.
    Schönborn SE; Goedecker S; Roy S; Oganov AR
    J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to N=330.
    Shao X; Jiang H; Cai W
    J Chem Inf Comput Sci; 2004; 44(1):193-9. PubMed ID: 14741028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unbiased fuzzy global optimization of Lennard-Jones clusters for N ≤ 1000.
    Yu K; Wang X; Chen L; Wang L
    J Chem Phys; 2019 Dec; 151(21):214105. PubMed ID: 31822070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372.
    Pullan W
    J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel lattice-searching method for modeling the optimal strain-free close-packed isomers of clusters.
    Cheng L; Yang J
    J Phys Chem A; 2007 Mar; 111(12):2336-42. PubMed ID: 17388327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Compressing liquid": an efficient global minima search strategy for clusters.
    Zhou RL; Zhao LY; Pan BC
    J Chem Phys; 2009 Jul; 131(3):034108. PubMed ID: 19624182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth pattern of truncated octahedra in al(n) (N Shao X; Wu X; Cai W
    J Phys Chem A; 2010 Jan; 114(1):29-36. PubMed ID: 20014801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.