BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18351745)

  • 21. Conformational preferences and prolyl cis-trans isomerization of phosphorylated Ser/Thr-Pro motifs.
    Byun BJ; Kang YK
    Biopolymers; 2010 Apr; 93(4):330-9. PubMed ID: 19885922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen stability: insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations.
    DeRider ML; Wilkens SJ; Waddell MJ; Bretscher LE; Weinhold F; Raines RT; Markley JL
    J Am Chem Soc; 2002 Mar; 124(11):2497-505. PubMed ID: 11890798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Puckering transition of 4-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2005 Sep; 109(35):16982-7. PubMed ID: 16853162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational preferences of 4-chloroproline residues.
    Park HS; Byun BJ; Motooka D; Kawahara K; Doi M; Nakazawa T; Kobayashi Y; Kang YK
    Biopolymers; 2012 Aug; 97(8):629-41. PubMed ID: 22605554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peptides containing the sulfonamide transition-state isostere: synthesis and structure of N-acetyl-tauryl-L-proline methylamide.
    Moree WJ; Schouten A; Kroon J; Liskamp RM
    Int J Pept Protein Res; 1995 Jun; 45(6):501-7. PubMed ID: 7558579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Puckering transition of proline residue in water.
    Kang YK
    J Phys Chem B; 2007 Sep; 111(35):10550-6. PubMed ID: 17696525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational preferences of proline oligopeptides.
    Kang YK; Jhon JS; Park HS
    J Phys Chem B; 2006 Sep; 110(35):17645-55. PubMed ID: 16942110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum mechanical and NMR studies of ring puckering and cis/trans-rotameric interconversion in prolines and hydroxyprolines.
    Aliev AE; Bhandal S; Courtier-Murias D
    J Phys Chem A; 2009 Oct; 113(40):10858-65. PubMed ID: 19757781
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solvation Induced Ring Puckering Effect in Fluorinated Prolines and Its Inclusion in Classical Force Fields.
    Muralidharan A; Schmidt JR; Yethiraj A
    J Phys Chem B; 2020 Jul; 124(28):5899-5906. PubMed ID: 32551633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unusual cis-trans isomerism in N-acetyl, N'-methylamide derivatives of syn- and anti-5-methylproline.
    Delaney NG; Madison V
    Int J Pept Protein Res; 1982 May; 19(5):543-8. PubMed ID: 7118423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solvent-induced conformational flexibility of a bicyclic proline analogue: Octahydroindole-2-carboxylic acid.
    Torras J; Warren JG; Revilla-López G; Jiménez AI; Cativiela C; Alemán C
    Biopolymers; 2014 Mar; 102(2):176-90. PubMed ID: 24458264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational preferences of 1-amino-2-phenylcyclohexanecarboxylic acid, a phenylalanine cyclohexane analogue.
    Alemán C; Jiménez AI; Cativiela C; Nussinov R; Casanovas J
    J Org Chem; 2009 Oct; 74(20):7834-43. PubMed ID: 19772338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of cis-proline analogs on peptide conformation.
    Che Y; Marshall GR
    Biopolymers; 2006 Apr; 81(5):392-406. PubMed ID: 16358327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational studies of proline-, thiaproline- and dimethylsilaproline-containing diketopiperazines.
    Cavelier F; Marchand D; Mbassi P; Martinez J; Marraud M
    J Pept Sci; 2006 Oct; 12(10):621-5. PubMed ID: 16786506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic conformational preferences of C(alpha,alpha)-dibenzylglycine.
    Casanovas J; Nussinov R; Alemán C
    J Org Chem; 2008 Jun; 73(11):4205-11. PubMed ID: 18465898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational preferences of non-prolyl and prolyl residues.
    Kang YK
    J Phys Chem B; 2006 Oct; 110(42):21338-48. PubMed ID: 17048963
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Side-chain to backbone interactions dictate the conformational preferences of a cyclopentane arginine analogue.
    Revilla-López G; Torras J; Jiménez AI; Cativiela C; Nussinov R; Alemán C
    J Org Chem; 2009 Mar; 74(6):2403-12. PubMed ID: 19236034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational preference of fused carbohydrate-templated proline analogues--a computational study.
    Teklebrhan RB; Owens NW; Xidos JD; Schreckenbach G; Wetmore SD; Schweizer F
    J Phys Chem B; 2013 Jan; 117(1):199-205. PubMed ID: 23227822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational study on trans- and cis-N-acetyl-N'-methylamides of Pro-Xaa dipeptides.
    Han SJ; Kang YK
    Int J Pept Protein Res; 1993 Dec; 42(6):518-26. PubMed ID: 8307683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density functional theory based study on cis-trans isomerism of the amide bond in homodimers of β(2,3)- and β(3)-substituted homoproline.
    Suresh Kumar NV; Singh H
    J Phys Chem A; 2014 Mar; 118(11):2120-37. PubMed ID: 24559065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.