These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 18351871)
1. Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Hörger I; Velasco E; Mingorance J; Rivas G; Tarazona P; Vélez M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011902. PubMed ID: 18351871 [TBL] [Abstract][Full Text] [Related]
2. Origin of contractile force during cell division of bacteria. Ghosh B; Sain A Phys Rev Lett; 2008 Oct; 101(17):178101. PubMed ID: 18999788 [TBL] [Abstract][Full Text] [Related]
3. Strong FtsZ is with the force: mechanisms to constrict bacteria. Mingorance J; Rivas G; Vélez M; Gómez-Puertas P; Vicente M Trends Microbiol; 2010 Aug; 18(8):348-56. PubMed ID: 20598544 [TBL] [Abstract][Full Text] [Related]
4. A model of membrane contraction predicting initiation and completion of bacterial cell division. Dow CE; Rodger A; Roper DI; van den Berg HA Integr Biol (Camb); 2013 May; 5(5):778-95. PubMed ID: 23463171 [TBL] [Abstract][Full Text] [Related]
5. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. Mateos-Gil P; Tarazona P; Vélez M FEMS Microbiol Rev; 2019 Jan; 43(1):73-87. PubMed ID: 30376053 [TBL] [Abstract][Full Text] [Related]
6. Mechanical signaling in networks of motor and cytoskeletal proteins. Howard J Annu Rev Biophys; 2009; 38():217-34. PubMed ID: 19416067 [TBL] [Abstract][Full Text] [Related]
7. Constricting force of filamentary protein rings evaluated from experimental results. Hörger I; Campelo F; Hernández-Machado A; Tarazona P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031922. PubMed ID: 20365785 [TBL] [Abstract][Full Text] [Related]
8. Polymorphism of FtsZ filaments on lipid surfaces: role of monomer orientation. Encinar M; Kralicek AV; Martos A; Krupka M; Cid S; Alonso A; Rico AI; Jiménez M; Vélez M Langmuir; 2013 Jul; 29(30):9436-46. PubMed ID: 23837832 [TBL] [Abstract][Full Text] [Related]
9. FtsZ and the division of prokaryotic cells and organelles. Margolin W Nat Rev Mol Cell Biol; 2005 Nov; 6(11):862-71. PubMed ID: 16227976 [TBL] [Abstract][Full Text] [Related]
10. A mechanical explanation for cytoskeletal rings and helices in bacteria. Andrews SS; Arkin AP Biophys J; 2007 Sep; 93(6):1872-84. PubMed ID: 17513368 [TBL] [Abstract][Full Text] [Related]
11. Torsion and curvature of FtsZ filaments. González de Prado Salas P; Hörger I; Martín-García F; Mendieta J; Alonso Á; Encinar M; Gómez-Puertas P; Vélez M; Tarazona P Soft Matter; 2014 Mar; 10(12):1977-86. PubMed ID: 24652404 [TBL] [Abstract][Full Text] [Related]
12. Diverse paths to midcell: assembly of the bacterial cell division machinery. Goehring NW; Beckwith J Curr Biol; 2005 Jul; 15(13):R514-26. PubMed ID: 16005287 [TBL] [Abstract][Full Text] [Related]
13. Bacterial cell division: the mechanism and its precison. Harry E; Monahan L; Thompson L Int Rev Cytol; 2006; 253():27-94. PubMed ID: 17098054 [TBL] [Abstract][Full Text] [Related]
14. Dynamic buckling of morphoelastic filaments. Goldstein RE; Goriely A Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):010901. PubMed ID: 16907052 [TBL] [Abstract][Full Text] [Related]
15. Helix rotation model of the flagellar rotary motor. Schmitt R Biophys J; 2003 Aug; 85(2):843-52. PubMed ID: 12885632 [TBL] [Abstract][Full Text] [Related]