These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18351900)

  • 1. Comment on "correlated noise in a logistic growth model".
    Behera A; O'Rourke SF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):013901; discussion 013902. PubMed ID: 18351900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic model for tumor growth with immunization.
    Bose T; Trimper S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051903. PubMed ID: 19518476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-assisted interactions of tumor and immune cells.
    Bose T; Trimper S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021927. PubMed ID: 21929038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic models for tumoral growth.
    Escudero C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):020902. PubMed ID: 16605321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical mechanics model of angiogenic tumor growth.
    Ferreira AL; Lipowska D; Lipowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010901. PubMed ID: 22400505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometrical approach to tumor growth.
    Escudero C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021901. PubMed ID: 17025466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation.
    Laforge B; Guez D; Martinez M; Kupiec JJ
    Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient and stationary characteristics of the Malthus-Verhulst-Bernoulli model with non-Gaussian fluctuating parameters.
    Dubkov AA; Kharcheva AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052146. PubMed ID: 25353778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population extinction and quasi-stationary behavior in stochastic density-dependent structured models.
    Block GL; Allen LJ
    Bull Math Biol; 2000 Mar; 62(2):199-228. PubMed ID: 10824427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-criticality underlies the behavior of early tumor growth.
    Remy G; Cluzel P
    Phys Biol; 2016 Apr; 13(2):026005. PubMed ID: 27043180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On a mathematical model of tumor growth based on cancer stem cells.
    Tello JI
    Math Biosci Eng; 2013 Feb; 10(1):263-78. PubMed ID: 23311372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic resonance in an ensemble of bistable systems under stable distribution noises and nonhomogeneous coupling.
    Tang Y; Zou W; Lu J; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046207. PubMed ID: 22680556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probability dynamics of a repopulating tumor in case of fractionated external radiotherapy.
    Stavreva N; Stavrev P; Fallone BG
    Phys Med; 2009 Dec; 25(4):181-91. PubMed ID: 19345599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-cycle times and the tumour control probability.
    Maler A; Lutscher F
    Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic growth and extinction in a spatial geometric Brownian population model with migration and correlated noise.
    Engen S
    Math Biosci; 2007 Sep; 209(1):240-55. PubMed ID: 17316709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback.
    Gaudreault M; Lépine F; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061920. PubMed ID: 20365203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colored-noise-induced discontinuous transitions in symbiotic ecosystems.
    Mankin R; Sauga A; Ainsaar A; Haljas A; Paunel K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061106. PubMed ID: 15244539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple extinction routes in stochastic population models.
    Gottesman O; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021140. PubMed ID: 22463185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.