These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18351935)

  • 1. Transitions in the wake of a flapping foil.
    Godoy-Diana R; Aider JL; Wesfreid JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016308. PubMed ID: 18351935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical features of the wake behind a pitching foil.
    Deng J; Sun L; Shao X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063013. PubMed ID: 26764810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional transition after wake deflection behind a flapping foil.
    Deng J; Caulfield CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043017. PubMed ID: 25974590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propulsion performance of a two-dimensional flapping airfoil with wake map and dynamic mode decomposition analysis.
    Zheng H; Xie F; Zheng Y; Ji T; Zhu Z
    Phys Rev E; 2019 Jun; 99(6-1):063109. PubMed ID: 31330751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wake and aeroelasticity of a flexible pitching foil.
    D'Adamo J; Collaud M; Sosa R; Godoy-Diana R
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and nonlinear perturbation analysis of the symmetry breaking in time-periodic propulsive wakes.
    Jallas D; Marquet O; Fabre D
    Phys Rev E; 2017 Jun; 95(6-1):063111. PubMed ID: 28709180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Route to transition in propulsive performance of oscillating foil.
    Verma S; Hemmati A
    Phys Rev E; 2022 Apr; 105(4-2):045102. PubMed ID: 35590627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial wake transition past a thin pitching plate.
    De AK; Sarkar S
    Phys Rev E; 2021 Aug; 104(2-2):025106. PubMed ID: 34525617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wake structure and hydrodynamic performance of flapping foils mimicking fish fin kinematics.
    Liu W; Li N; Zhao J; Su Y
    Saudi J Biol Sci; 2017 Sep; 24(6):1344-1354. PubMed ID: 28855830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bénard-von Kármán vortex street in a Bose-Einstein condensate.
    Sasaki K; Suzuki N; Saito H
    Phys Rev Lett; 2010 Apr; 104(15):150404. PubMed ID: 20481976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Frequency-Amplitude Parameter and Aspect Ratio on Propulsion Performance of Underwater Flapping-Foil.
    Ding H; Chen R; Zhu Y; Shen H; Gao Q
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase oscillations differently.
    Gungor A; Hemmati A
    Phys Rev E; 2020 Oct; 102(4-1):043104. PubMed ID: 33212661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2008 Apr; 603():331-365. PubMed ID: 19746195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What information do Kármán streets offer to flow sensing?
    Akanyeti O; Venturelli R; Visentin F; Chambers L; Megill WM; Fiorini P
    Bioinspir Biomim; 2011 Sep; 6(3):036001. PubMed ID: 21670492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time parametric estimation of periodic wake-foil interactions using bioinspired pressure sensing and machine learning.
    Xu WH; Xu GD; Shan L
    Bioinspir Biomim; 2022 Mar; 17(2):. PubMed ID: 34996050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.
    Xiao Q; Hu J; Liu H
    Bioinspir Biomim; 2014 Mar; 9(1):016008. PubMed ID: 24434625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.