These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18351953)

  • 1. Strongly interacting bubbles under an ultrasonic horn.
    Yasui K; Iida Y; Tuziuti T; Kozuka T; Towata A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016609. PubMed ID: 18351953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field.
    Vanhille C
    Ultrason Sonochem; 2020 May; 63():104972. PubMed ID: 31978709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.
    Jiao J; He Y; Leong T; Kentish SE; Ashokkumar M; Manasseh R; Lee J
    J Phys Chem B; 2013 Oct; 117(41):12549-55. PubMed ID: 24098969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave.
    Yoshida K; Fujikawa T; Watanabe Y
    J Acoust Soc Am; 2011 Jul; 130(1):135-44. PubMed ID: 21786884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of translational motion on the Bjerknes forces of bubbles activated by strong acoustic waves.
    Zhang X; Li F; Wang C; Mo R; Hu J; Guo J; Lin S
    Ultrasonics; 2022 Dec; 126():106809. PubMed ID: 35905527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid.
    Thiemann A; Holsteyns F; Cairós C; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():663-676. PubMed ID: 27773293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective bubble dynamics near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2012 Jul; 132(1):37-47. PubMed ID: 22779453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).
    Rosselló JM; Dellavale D; Bonetto FJ
    Ultrason Sonochem; 2015 Jan; 22():59-69. PubMed ID: 24974006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous motion of particles attached to cavitation bubbles.
    Xu F; Liu Y; Chen M; Luo J; Bai L
    Ultrason Sonochem; 2024 Jul; 107():106888. PubMed ID: 38697875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the bubble-bubble interaction on radial pulsations of bubbles.
    Shen Y; Zhang L; Wu Y; Chen W
    Ultrason Sonochem; 2021 May; 73():105535. PubMed ID: 33823488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves.
    Chen Y; Ni C; Xie G; Liu Q
    Ultrason Sonochem; 2020 Jun; 64():105003. PubMed ID: 32062535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circular motion of submillimeter-sized acoustic bubbles attached to a boundary by high-speed image analysis.
    Bai L; Sun J; Gao Y; Xu W; Zeng Z; Ma Y; Bai L
    Ultrason Sonochem; 2021 Jun; 74():105577. PubMed ID: 33946012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the dynamics of two interacting bubbles in a megasonic field.
    Ochiai N; Ishimoto J
    Ultrason Sonochem; 2015 Sep; 26():351-360. PubMed ID: 25892462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and theoretical analysis of secondary Bjerknes forces between two bubbles in a standing wave.
    Jiao J; He Y; Kentish SE; Ashokkumar M; Manasseh R; Lee J
    Ultrasonics; 2015 Apr; 58():35-42. PubMed ID: 25542344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubble dynamics and cavitation intensity in milli-scale channels under an ultrasonic horn.
    Tan KL; Yeo SH
    Ultrason Sonochem; 2019 Nov; 58():104666. PubMed ID: 31450291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning.
    Kang BK; Kim MS; Park JG
    Ultrason Sonochem; 2014 Jul; 21(4):1496-503. PubMed ID: 24529613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.