These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 18351960)
21. An introduction to dissipative particle dynamics. Lu ZY; Wang YL Methods Mol Biol; 2013; 924():617-33. PubMed ID: 23034766 [TBL] [Abstract][Full Text] [Related]
22. Construction of Multiscale Dissipative Particle Dynamics (DPD) Models from Other Coarse-Grained Models. Wang Y; Hernandez R ACS Omega; 2024 Apr; 9(15):17667-17680. PubMed ID: 38645334 [TBL] [Abstract][Full Text] [Related]
23. Dissipative particle dynamics with an effective pair potential from integral equation theory of molecular liquids. Kobryn AE; Nikolić D; Lyubimova O; Gusarov S; Kovalenko A J Phys Chem B; 2014 Oct; 118(41):12034-49. PubMed ID: 25162701 [TBL] [Abstract][Full Text] [Related]
24. Effective control of the transport coefficients of a coarse-grained liquid and polymer models using the dissipative particle dynamics and Lowe-Andersen equations of motion. Qian HJ; Liew CC; Müller-Plathe F Phys Chem Chem Phys; 2009 Mar; 11(12):1962-9. PubMed ID: 19280007 [TBL] [Abstract][Full Text] [Related]
25. Dielectric response of nanoscopic spherical colloids in alternating electric fields: a dissipative particle dynamics simulation. Zhou J; Schmid F J Phys Condens Matter; 2012 Nov; 24(46):464112. PubMed ID: 23114013 [TBL] [Abstract][Full Text] [Related]
26. A test of systematic coarse-graining of molecular dynamics simulations: Transport properties. Fu CC; Kulkarni PM; Shell MS; Leal LG J Chem Phys; 2013 Sep; 139(9):094107. PubMed ID: 24028102 [TBL] [Abstract][Full Text] [Related]
27. A Coarse-Grained Model Based on Morse Potential for Water and n-Alkanes. Chiu SW; Scott HL; Jakobsson E J Chem Theory Comput; 2010 Mar; 6(3):851-63. PubMed ID: 26613312 [TBL] [Abstract][Full Text] [Related]
28. Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics. Español P; Donev A J Chem Phys; 2015 Dec; 143(23):234104. PubMed ID: 26696043 [TBL] [Abstract][Full Text] [Related]
29. Bottom-up derivation of an effective thermostat for united atoms simulations of water. Eriksson A; Jacobi MN; Nyström J; Tunstrøm K J Chem Phys; 2009 Apr; 130(16):164509. PubMed ID: 19405596 [TBL] [Abstract][Full Text] [Related]
30. Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics. Yoshimoto Y; Kinefuchi I; Mima T; Fukushima A; Tokumasu T; Takagi S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043305. PubMed ID: 24229302 [TBL] [Abstract][Full Text] [Related]
31. Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study. Li X; Guo J; Liu Y; Liang H J Chem Phys; 2009 Feb; 130(7):074908. PubMed ID: 19239317 [TBL] [Abstract][Full Text] [Related]
32. Foundations of dissipative particle dynamics. Flekkoy EG; Coveney PV; De Fabritiis G Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2140-57. PubMed ID: 11088680 [TBL] [Abstract][Full Text] [Related]
33. Conserving the linear momentum in stochastic dynamics: Dissipative particle dynamics as a general strategy to achieve local thermostatization in molecular dynamics simulations. Passler PP; Hofer TS J Comput Chem; 2017 Feb; 38(5):265-275. PubMed ID: 27888515 [TBL] [Abstract][Full Text] [Related]
34. Computing the non-Markovian coarse-grained interactions derived from the Mori-Zwanzig formalism in molecular systems: Application to polymer melts. Li Z; Lee HS; Darve E; Karniadakis GE J Chem Phys; 2017 Jan; 146(1):014104. PubMed ID: 28063444 [TBL] [Abstract][Full Text] [Related]
35. Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method. Mo CJ; Yang LJ; Zhao F; Cui KD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023008. PubMed ID: 26382504 [TBL] [Abstract][Full Text] [Related]
36. Bottom-up coarse-graining of a simple graphene model: the blob picture. Kauzlarić D; Meier JT; Español P; Succi S; Greiner A; Korvink JG J Chem Phys; 2011 Feb; 134(6):064106. PubMed ID: 21322660 [TBL] [Abstract][Full Text] [Related]
37. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems. Xu Z; Meakin P J Chem Phys; 2009 Jun; 130(23):234103. PubMed ID: 19548707 [TBL] [Abstract][Full Text] [Related]
38. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments. Pan W; Fedosov DA; Karniadakis GE; Caswell B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046706. PubMed ID: 18999560 [TBL] [Abstract][Full Text] [Related]