These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 18352051)

  • 21. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes.
    Sikder MK; Stone KA; Kumar PB; Laradji M
    J Chem Phys; 2014 Aug; 141(5):054902. PubMed ID: 25106608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of integral proteins in the phase stability of a lipid bilayer: application to raft formation in cell membranes.
    Gómez J; Sagués F; Reigada R
    J Chem Phys; 2010 Apr; 132(13):135104. PubMed ID: 20387961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward a mathematical model of the assembly and disassembly of membrane microdomains: comparison with experimental models.
    Richardson G; Cummings LJ; Harris HJ; O'Shea P
    Biophys J; 2007 Jun; 92(12):4145-56. PubMed ID: 17384069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.
    Krause MR; Regen SL
    Acc Chem Res; 2014 Dec; 47(12):3512-21. PubMed ID: 25310179
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How principles of domain formation in model membranes may explain ambiguities concerning lipid raft formation in cells.
    London E
    Biochim Biophys Acta; 2005 Dec; 1746(3):203-20. PubMed ID: 16225940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol modulation of membrane resistance to Triton X-100 explored by atomic force microscopy.
    El Kirat K; Morandat S
    Biochim Biophys Acta; 2007 Sep; 1768(9):2300-9. PubMed ID: 17560898
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Entropic traps" in the kinetics of phase separation in multicomponent membranes stabilize nanodomains.
    Frolov VA; Chizmadzhev YA; Cohen FS; Zimmerberg J
    Biophys J; 2006 Jul; 91(1):189-205. PubMed ID: 16617071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of nonequilibrium membrane bud formation.
    Sens P
    Phys Rev Lett; 2004 Sep; 93(10):108103. PubMed ID: 15447455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins.
    Perutková S; Kralj-Iglic V; Frank M; Iglic A
    J Biomech; 2010 May; 43(8):1612-7. PubMed ID: 20185134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt.
    Kuzmin PI; Akimov SA; Chizmadzhev YA; Zimmerberg J; Cohen FS
    Biophys J; 2005 Feb; 88(2):1120-33. PubMed ID: 15542550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.
    van der Goot FG; Harder T
    Semin Immunol; 2001 Apr; 13(2):89-97. PubMed ID: 11308292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal.
    Brown RE
    J Cell Sci; 1998 Jan; 111 ( Pt 1)(0 1):1-9. PubMed ID: 9394007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid rafts as functional heterogeneity in cell membranes.
    Lingwood D; Kaiser HJ; Levental I; Simons K
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):955-60. PubMed ID: 19754431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluctuation-induced interactions between domains in membranes.
    Dean DS; Manghi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021916. PubMed ID: 17025481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.
    Shaikh SR; Rockett BD; Salameh M; Carraway K
    J Nutr; 2009 Sep; 139(9):1632-9. PubMed ID: 19640970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rafts making and rafts braking: how plant flavonoids may control membrane heterogeneity.
    Tarahovsky YS; Muzafarov EN; Kim YA
    Mol Cell Biochem; 2008 Jul; 314(1-2):65-71. PubMed ID: 18414995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seeing spots: complex phase behavior in simple membranes.
    Veatch SL; Keller SL
    Biochim Biophys Acta; 2005 Dec; 1746(3):172-85. PubMed ID: 16043244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulating the size and stabilization of lipid raft-like domains and using calcium ions as their probe.
    Szekely O; Schilt Y; Steiner A; Raviv U
    Langmuir; 2011 Dec; 27(24):14767-75. PubMed ID: 22066979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topographic control of lipid-raft reconstitution in model membranes.
    Yoon TY; Jeong C; Lee SW; Kim JH; Choi MC; Kim SJ; Kim MW; Lee SD
    Nat Mater; 2006 Apr; 5(4):281-5. PubMed ID: 16565710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.