These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 18352071)
1. Population extinction and survival in a hostile environment. Méndez V; Campos D Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):022901. PubMed ID: 18352071 [TBL] [Abstract][Full Text] [Related]
2. Extinction and chaotic patterns in map lattices under hostile conditions. Méndez V; Campos D; Llopis I; Horsthemke W Bull Math Biol; 2010 Feb; 72(2):432-43. PubMed ID: 19760463 [TBL] [Abstract][Full Text] [Related]
3. Extinction conditions for isolated populations with Allee effect. Méndez V; Sans C; Llopis I; Campos D Math Biosci; 2011 Jul; 232(1):78-86. PubMed ID: 21570412 [TBL] [Abstract][Full Text] [Related]
4. Extinction dynamics of Lotka-Volterra ecosystems on evolving networks. Coppex F; Droz M; Lipowski A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061901. PubMed ID: 15244611 [TBL] [Abstract][Full Text] [Related]
5. Synchronization and stability in noisy population dynamics. Araujo SB; de Aguiar MA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):022903. PubMed ID: 18352073 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal complexity of a ratio-dependent predator-prey system. Wang W; Liu QX; Jin Z Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051913. PubMed ID: 17677104 [TBL] [Abstract][Full Text] [Related]
8. Species extinction and permanence of an impulsively controlled two-prey one-predator system with seasonal effects. Baek H Biosystems; 2009 Oct; 98(1):7-18. PubMed ID: 19591895 [TBL] [Abstract][Full Text] [Related]
9. Predation effects on mean time to extinction under demographic stochasticity. Palamara GM; Delius GW; Smith MJ; Petchey OL J Theor Biol; 2013 Oct; 334():61-70. PubMed ID: 23778159 [TBL] [Abstract][Full Text] [Related]
10. Existence of traveling wave solutions in a diffusive predator-prey model. Huang J; Lu G; Ruan S J Math Biol; 2003 Feb; 46(2):132-52. PubMed ID: 12567231 [TBL] [Abstract][Full Text] [Related]
11. Angular velocity variations and stability of spatially explicit prey-predator systems. Abta R; Shnerb NM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051914. PubMed ID: 17677105 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Wang L; Watmough J; Yu F Math Biosci Eng; 2015 Aug; 12(4):699-715. PubMed ID: 25974343 [TBL] [Abstract][Full Text] [Related]
13. Delayed population models with Allee effects and exploitation. Liz E; Ruiz-Herrera A Math Biosci Eng; 2015 Feb; 12(1):83-97. PubMed ID: 25811339 [TBL] [Abstract][Full Text] [Related]
14. Multiple extinction routes in stochastic population models. Gottesman O; Meerson B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021140. PubMed ID: 22463185 [TBL] [Abstract][Full Text] [Related]
15. Individual-based predator-prey model for biological coevolution: fluctuations, stability, and community structure. Rikvold PA; Sevim V Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051920. PubMed ID: 17677111 [TBL] [Abstract][Full Text] [Related]
16. Periodicity of mass extinctions without an extraterrestrial cause. Lipowski A Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):052902. PubMed ID: 16089582 [TBL] [Abstract][Full Text] [Related]
17. Stochastic analysis of the Lotka-Volterra model for ecosystems. Cai GQ; Lin YK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438 [TBL] [Abstract][Full Text] [Related]
18. Experimental demonstration of population extinction due to a predator-driven Allee effect. Kramer AM; Drake JM J Anim Ecol; 2010 May; 79(3):633-9. PubMed ID: 20102421 [TBL] [Abstract][Full Text] [Related]
19. The effect of habitat fragmentation on cyclic population dynamics: a numerical study. Strohm S; Tyson R Bull Math Biol; 2009 Aug; 71(6):1323-48. PubMed ID: 19352778 [TBL] [Abstract][Full Text] [Related]
20. Competition and diffusive invasion in a noisy environment. Malchow H; James A; Brown R Math Med Biol; 2011 Jun; 28(2):153-63. PubMed ID: 20462943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]