These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18352144)

  • 41. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consistent lattice Boltzmann methods for incompressible axisymmetric flows.
    Zhang L; Yang S; Zeng Z; Yin L; Zhao Y; Chew JW
    Phys Rev E; 2016 Aug; 94(2-1):023302. PubMed ID: 27627407
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas.
    Brey JJ; Buzón V; Maynar P; García de Soria MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052201. PubMed ID: 26066167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.
    Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids.
    Luo K; Wu J; Yi HL; Tan HP
    Phys Rev E; 2016 Feb; 93(2):023309. PubMed ID: 26986441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic lattice Boltzmann method for microscale gas flows: issues on boundary condition, relaxation time, and regularization.
    Niu XD; Hyodo SA; Munekata T; Suga K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036711. PubMed ID: 17930365
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Granular mixtures modeled as elastic hard spheres subject to a drag force.
    Vega Reyes F; Garzó V; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061306. PubMed ID: 17677254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impinging laminar jets at moderate Reynolds numbers and separation distances.
    Bergthorson JM; Sone K; Mattner TW; Dimotakis PE; Goodwin DG; Meiron DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066307. PubMed ID: 16486059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows.
    Ginzburg I; Silva G; Marson F; Chopard B; Latt J
    Phys Rev E; 2023 Feb; 107(2-2):025303. PubMed ID: 36932550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mesoscopic Simulation of the (2 + 1)-Dimensional Wave Equation with Nonlinear Damping and Source Terms Using the Lattice Boltzmann BGK Model.
    Li D; Lai H; Shi B
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Turbulent wake solutions of the Prandtl alpha equations.
    Putkaradze V; Weidman P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036304. PubMed ID: 12689162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.
    Hu K; Zhang H; Geng S
    Phys Rev E; 2016 Oct; 94(4-1):043314. PubMed ID: 27841553
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.
    Liang H; Shi BC; Guo ZL; Chai ZH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053320. PubMed ID: 25353927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.
    Fakhari A; Lee T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023304. PubMed ID: 23496636
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acoustic multipole sources for the lattice Boltzmann method.
    Viggen EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023306. PubMed ID: 23496638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theory of the Lattice Boltzmann method: Derivation of macroscopic equations via the Maxwell iteration.
    Yong WA; Zhao W; Luo LS
    Phys Rev E; 2016 Mar; 93(3):033310. PubMed ID: 27078487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrodynamics beyond Navier-Stokes: the slip flow model.
    Yudistiawan WP; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016705. PubMed ID: 18764079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations.
    Luo LS; Liao W; Chen X; Peng Y; Zhang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shear stress in lattice Boltzmann simulations.
    Krüger T; Varnik F; Raabe D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046704. PubMed ID: 19518377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.