These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 18352148)

  • 1. Lattice Boltzmann equation linear stability analysis: thermal and athermal models.
    Siebert DN; Hegele LA; Philippi PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026707. PubMed ID: 18352148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and numerical study of axisymmetric lattice Boltzmann models.
    Huang H; Lu XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016701. PubMed ID: 19658832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices.
    Li Q; Luo KH; He YL; Gao YJ; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016710. PubMed ID: 22400704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of the lattice Boltzmann method: three-dimensional model for linear viscoelastic fluids.
    Lallemand P; D'Humières D; Luo LS; Rubinstein R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021203. PubMed ID: 12636662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattices for the lattice Boltzmann method.
    Chikatamarla SS; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046701. PubMed ID: 19518374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consistent lattice Boltzmann equations for phase transitions.
    Siebert DN; Philippi PC; Mattila KK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053310. PubMed ID: 25493907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models.
    Philippi PC; Hegele LA; Dos Santos LO; Surmas R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preconditioned lattice-Boltzmann method for steady flows.
    Guo Z; Zhao TS; Shi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066706. PubMed ID: 15697552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional lattice Boltzmann model for compressible flows.
    Sun C; Hsu AT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multidimensional on-lattice higher-order models in the thermal lattice Boltzmann theory.
    Shim JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053310. PubMed ID: 24329382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force imbalance in lattice Boltzmann equation for two-phase flows.
    Guo Z; Zheng C; Shi B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036707. PubMed ID: 21517625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection-diffusion equations.
    Simonis S; Frank M; Krause MJ
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190400. PubMed ID: 32564727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
    Li Q; Luo KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053022. PubMed ID: 25353895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann method for thermal flow simulation on standard lattices.
    Prasianakis NI; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016702. PubMed ID: 17677589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann model for compressible flows on standard lattices: Variable Prandtl number and adiabatic exponent.
    Saadat MH; Bösch F; Karlin IV
    Phys Rev E; 2019 Jan; 99(1-1):013306. PubMed ID: 30780294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Univariate polynomial equation providing on-lattice higher-order models of thermal lattice Boltzmann theory.
    Shim JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013312. PubMed ID: 23410465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows.
    Guo Z; Han H; Shi B; Zheng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046708. PubMed ID: 19518381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.