These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 18352151)
1. Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography. Sukop MC; Huang H; Lin CL; Deo MD; Oh K; Miller JD Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026710. PubMed ID: 18352151 [TBL] [Abstract][Full Text] [Related]
2. Linking continuum-scale state of wetting to pore-scale contact angles in porous media. Sun C; McClure JE; Mostaghimi P; Herring AL; Shabaninejad M; Berg S; Armstrong RT J Colloid Interface Sci; 2020 Mar; 561():173-180. PubMed ID: 31812863 [TBL] [Abstract][Full Text] [Related]
3. Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear. Harting J; Venturoli M; Coveney PV Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1703-22. PubMed ID: 15306441 [TBL] [Abstract][Full Text] [Related]
4. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media. Karani H; Huber C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633 [TBL] [Abstract][Full Text] [Related]
5. Linking drainage front morphology with gaseous diffusion in unsaturated porous media: a lattice Boltzmann study. Chau JF; Or D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056304. PubMed ID: 17279990 [TBL] [Abstract][Full Text] [Related]
6. Multiphase lattice Boltzmann method for particle suspensions. Joshi AS; Sun Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066703. PubMed ID: 19658621 [TBL] [Abstract][Full Text] [Related]
7. Lattice Boltzmann simulations of binary fluid flow through porous media. Tölke J; Krafczyk M; Schulz M; Rank E Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693 [TBL] [Abstract][Full Text] [Related]
9. Role of low flow and backward flow zones on colloid transport in pore structures derived from real porous media. Li X; Li Z; Zhang D Environ Sci Technol; 2010 Jul; 44(13):4936-42. PubMed ID: 20540578 [TBL] [Abstract][Full Text] [Related]
10. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Huang H; Krafczyk M; Lu X Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046710. PubMed ID: 22181310 [TBL] [Abstract][Full Text] [Related]
11. Droplet fragmentation: 3D imaging of a previously unidentified pore-scale process during multiphase flow in porous media. Pak T; Butler IB; Geiger S; van Dijke MI; Sorbie KS Proc Natl Acad Sci U S A; 2015 Feb; 112(7):1947-52. PubMed ID: 25646491 [TBL] [Abstract][Full Text] [Related]
12. The impact of transitions between two-fluid and three-fluidphases on fluid configuration and fluid-fluid interfacial areain porous media. Carroll KC; McDonald K; Marble J; Russo AE; Brusseau ML Water Resour Res; 2015 Sep; 51(9):7189-7201. PubMed ID: 27350722 [TBL] [Abstract][Full Text] [Related]
13. Pore-scale studies of spontaneous imbibition into oil-saturated porous media. Hatiboglu CU; Babadagli T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066311. PubMed ID: 18643375 [TBL] [Abstract][Full Text] [Related]
14. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation. Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719 [TBL] [Abstract][Full Text] [Related]
15. On the challenges of measuring interfacial characteristics of three-phase fluid flow with x-ray microtomography. Brown K; Schlüter S; Sheppard A; Wildenschild D J Microsc; 2014 Mar; 253(3):171-82. PubMed ID: 24517255 [TBL] [Abstract][Full Text] [Related]
16. Validation of pore network modeling for determination of two-phase transport in fibrous porous media. Huang X; Zhou W; Deng D Sci Rep; 2020 Nov; 10(1):20852. PubMed ID: 33257750 [TBL] [Abstract][Full Text] [Related]
17. Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic conditions. Montellà EP; Chareyre B; Salager S; Gens A MethodsX; 2020; 7():101090. PubMed ID: 33194560 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Fluid-Fluid Interfacial Areas Measured with X-ray Microtomography and Interfacial Partitioning Tracer Tests for the same Samples. McDonald K; Carroll KC; Brusseau ML Water Resour Res; 2016 Jul; 52(7):5393-5399. PubMed ID: 28936003 [TBL] [Abstract][Full Text] [Related]
19. Optimizing pink-beam fast X-ray microtomography for multiphase flow in 3D porous media. Meisenheimer DE; Rivers ML; Wildenschild D J Microsc; 2020 Feb; 277(2):100-106. PubMed ID: 32022271 [TBL] [Abstract][Full Text] [Related]
20. A pore-scale investigation of a multiphase porous media system. Al-Raoush RI; Willson CS J Contam Hydrol; 2005 Mar; 77(1-2):67-89. PubMed ID: 15722173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]