These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18352161)

  • 1. Molecular simulation of transport in nanopores: application of the transient-time correlation function formalism.
    Desgranges C; Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027701. PubMed ID: 18352161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear viscosity of liquid copper at experimentally accessible shear rates: application of the transient-time correlation function formalism.
    Desgranges C; Delhommelle J
    J Chem Phys; 2008 Feb; 128(8):084506. PubMed ID: 18315060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conductivity of molten sodium chloride in an arbitrarily weak dc electric field.
    Delhommelle J; Cummings PT; Petravic J
    J Chem Phys; 2005 Sep; 123(11):114505. PubMed ID: 16392571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of viscosity for molecular fluids at experimentally accessible shear rates using the transient time correlation function formalism.
    Pan G; McCabe C
    J Chem Phys; 2006 Nov; 125(19):194527. PubMed ID: 17129143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational mobilities of proteins in nanochannels: A coarse-grained molecular dynamics study.
    Haridasan N; Kannam SK; Mogurampelly S; Sathian SP
    Phys Rev E; 2018 Jun; 97(6-1):062415. PubMed ID: 30011556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores.
    Lai SK; Kau CY; Tang YW; Chan KY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051203. PubMed ID: 15244814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of a pressure-driven liquid transport process in a cylindrical nanopore using two self-adjusting plates.
    Huang C; Nandakumar K; Choi PY; Kostiuk LW
    J Chem Phys; 2006 Jun; 124(23):234701. PubMed ID: 16821935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores.
    Tagliazucchi M; Rabin Y; Szleifer I
    J Am Chem Soc; 2011 Nov; 133(44):17753-63. PubMed ID: 21942450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient-time correlation function applied to mixed shear and elongational flows.
    Hartkamp R; Bernardi S; Todd BD
    J Chem Phys; 2012 Feb; 136(6):064105. PubMed ID: 22360167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations.
    Sam A; Hartkamp R; Kannam SK; Sathian SP
    Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freezing of mixtures confined in silica nanopores: experiment and molecular simulation.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Chem Phys; 2010 Aug; 133(8):084701. PubMed ID: 20815584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion transport in sub-5-nm graphene nanopores.
    Suk ME; Aluru NR
    J Chem Phys; 2014 Feb; 140(8):084707. PubMed ID: 24588191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of entrance and exit effects on liquid transport through a cylindrical nanopore.
    Huang C; Choi PY; Nandakumar K; Kostiuk LW
    Phys Chem Chem Phys; 2008 Jan; 10(1):186-92. PubMed ID: 18075698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sampling mobility profiles of confined fluids with equilibrium molecular dynamics simulations.
    Mangaud E; Rotenberg B
    J Chem Phys; 2020 Jul; 153(4):044125. PubMed ID: 32752721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.
    Tadano T; Gohda Y; Tsuneyuki S
    J Phys Condens Matter; 2014 Jun; 26(22):225402. PubMed ID: 24824156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size and truncation effects for microscopic expressions for the temperature at equilibrium and nonequilibrium.
    Lervik A; Wilhelmsen Ø; Trinh TT; Nagel HR
    J Chem Phys; 2015 Sep; 143(11):114106. PubMed ID: 26395686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores.
    Coasne B; Czwartos J; Sliwinska-Bartkowiak M; Gubbins KE
    J Phys Chem B; 2009 Oct; 113(42):13874-81. PubMed ID: 19627116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
    Ho MC; Casciola M; Levine ZA; Vernier PT
    J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.