These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18352220)

  • 21. Structural and compositional properties of Er-doped silicon nanoclusters/oxides for multilayered photonic devices studied by STEM-EELS.
    Eljarrat A; López-Conesa L; Rebled JM; Berencén Y; Ramírez JM; Garrido B; Magén C; Estradé S; Peiró F
    Nanoscale; 2013 Oct; 5(20):9963-70. PubMed ID: 23989957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visualizing plasmon coupling in closely spaced chains of Ag nanoparticles by electron energy-loss spectroscopy.
    Song F; Wang T; Wang X; Xu C; He L; Wan J; Van Haesendonck C; Ringer SP; Han M; Liu Z; Wang G
    Small; 2010 Feb; 6(3):446-51. PubMed ID: 20077517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.
    Shah AB; Ramasse QM; Wen JG; Bhattacharya A; Zuo JM
    Micron; 2011 Aug; 42(6):539-46. PubMed ID: 21376607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scanning single quantum emitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states.
    Schell AW; Engel P; Werra JF; Wolff C; Busch K; Benson O
    Nano Lett; 2014 May; 14(5):2623-7. PubMed ID: 24694035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
    Bellido EP; Rossouw D; Botton GA
    Microsc Microanal; 2014 Jun; 20(3):767-78. PubMed ID: 24690472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the photonic density of states using layer-by-layer self-assembly.
    Ashry I; Zhang B; Stoianov SV; Daengngam C; Heflin JR; Robinson HD; Xu Y
    Opt Lett; 2012 Jun; 37(11):1835-7. PubMed ID: 22660045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictability of Localized Plasmonic Responses in Nanoparticle Assemblies.
    Roccapriore KM; Ziatdinov M; Cho SH; Hachtel JA; Kalinin SV
    Small; 2021 May; 17(21):e2100181. PubMed ID: 33838003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electron holography for the study of magnetic nanomaterials.
    Thomas JM; Simpson ET; Kasama T; Dunin-Borkowski RE
    Acc Chem Res; 2008 May; 41(5):665-74. PubMed ID: 18459804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles.
    Bauer C; Abid JP; Fermin D; Girault HH
    J Chem Phys; 2004 May; 120(19):9302-15. PubMed ID: 15267867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial coherence in complex photonic and plasmonic systems.
    Cazé A; Pierrat R; Carminati R
    Phys Rev Lett; 2013 Feb; 110(6):063903. PubMed ID: 23432244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy loss by channeled electrons: a quantitative study on transition metal oxides.
    Tatsumi K; Muto S; Rusz J
    Microsc Microanal; 2013 Dec; 19(6):1586-94. PubMed ID: 23985156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative atomic-scale analysis of interface structures: transmission electron microscopy and local density functional theory.
    Nufer S; Marinopoulos AG; Gemming T; Elsässer C; Kurtz W; Köstlmeier S; Rühle M
    Phys Rev Lett; 2001 May; 86(22):5066-9. PubMed ID: 11384422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.
    Brintlinger T; Herzing AA; Long JP; Vurgaftman I; Stroud R; Simpkins BS
    ACS Nano; 2015 Jun; 9(6):6222-32. PubMed ID: 25961937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultralow-energy excitations and prospects for spatially resolved spectroscopy.
    Howie A
    Microsc Microanal; 2004 Feb; 10(1):28-33. PubMed ID: 15306064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing non-dipole allowed excitations in highly correlated materials with nanoscale resolution.
    Gloter A; Chu MW; Kociak M; Chen CH; Colliex C
    Ultramicroscopy; 2009 Oct; 109(11):1333-7. PubMed ID: 19573991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars.
    Das P; Kedia A; Kumar PS; Large N; Chini TK
    Nanotechnology; 2013 Oct; 24(40):405704. PubMed ID: 24029251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy.
    Castrucci P; Scarselli M; De Crescenzi M; El Khakani MA; Rosei F
    Nanoscale; 2010 Sep; 2(9):1611-25. PubMed ID: 20820691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.