These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18352377)

  • 41. Properties of steady states in turbulent axisymmetric flows.
    Monchaux R; Ravelet F; Dubrulle B; Chiffaudel A; Daviaud F
    Phys Rev Lett; 2006 Mar; 96(12):124502. PubMed ID: 16605910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions.
    Bonn D; Ingremeau F; Amarouchene Y; Kellay H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):045301. PubMed ID: 22181216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-BĂ©nard convection.
    Lam S; Shang XD; Zhou SQ; Xia KQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066306. PubMed ID: 12188827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection.
    Grossmann S; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016305. PubMed ID: 12241479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows.
    Gomez T; Flutet V; Sagaut P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):035301. PubMed ID: 19392007
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws.
    Mininni PD; Alexakis A; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036306. PubMed ID: 18517510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces.
    Srinivasan S; Kleingartner JA; Gilbert JB; Cohen RE; Milne AJ; McKinley GH
    Phys Rev Lett; 2015 Jan; 114(1):014501. PubMed ID: 25615472
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Velocity and energy profiles in two- versus three-dimensional channels: Effects of an inverse- versus a direct-energy cascade.
    L'vov VS; Procaccia I; Rudenko O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045304. PubMed ID: 19518289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows.
    Cohen J; Philip J; Ben-Dov G
    Philos Trans A Math Phys Eng Sci; 2009 Feb; 367(1888):509-27. PubMed ID: 18990659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small viscosity asymptotics for the inertial range of local structure and for the wall region of wall-bounded turbulent shear flow.
    Barenblatt GI; Chorin AJ
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6749-52. PubMed ID: 11607688
    [TBL] [Abstract][Full Text] [Related]  

  • 52. First steps in modelling turbulence and its origins: a commentary on Reynolds (1895) 'On the dynamical theory of incompressible viscous fluids and the determination of the criterion'.
    Launder BE
    Philos Trans A Math Phys Eng Sci; 2015 Apr; 373(2039):. PubMed ID: 25750148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic dissipation of near-wall turbulent coherent structures in magnetohydrodynamic pipe flows.
    Moriconi L
    Phys Rev E; 2020 Apr; 101(4-1):043111. PubMed ID: 32422718
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Log-Poisson cascade description of turbulent velocity-gradient statistics.
    Kholmyansky M; Moriconi L; Pereira RM; Tsinober A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036311. PubMed ID: 19905216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cospectral budget of turbulence explains the bulk properties of smooth pipe flow.
    Katul GG; Manes C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063008. PubMed ID: 25615188
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hierarchical random additive model for passive scalars in wall-bounded flows at high Reynolds numbers.
    Yang XIA; Abkar M
    J Fluid Mech; 2018 May; 842():354-380. PubMed ID: 31631904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flow of power-law fluids in self-affine fracture channels.
    Yan Y; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036315. PubMed ID: 18517519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scaling laws in turbulence.
    Josserand C; Le Berre M; Pomeau Y
    Chaos; 2020 Jul; 30(7):073137. PubMed ID: 32752609
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The attenuation of sound by turbulence in internal flows.
    Weng C; Boij S; Hanifi A
    J Acoust Soc Am; 2013 Jun; 133(6):3764-76. PubMed ID: 23742331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.