These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks. Rodríguez R; Espinosa G; Gil JM; Stehlé C; Suzuki-Vidal F; Rubiano JG; Martel P; Mínguez E Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053106. PubMed ID: 26066271 [TBL] [Abstract][Full Text] [Related]
7. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments. Espinosa G; Rodríguez R; Gil JM; Suzuki-Vidal F; Lebedev SV; Ciardi A; Rubiano JG; Martel P Phys Rev E; 2017 Mar; 95(3-1):033201. PubMed ID: 28415177 [TBL] [Abstract][Full Text] [Related]
9. Dynamical overstability of radiative blast waves: the atomic physics of shock stability. Laming JM; Grun J Phys Rev Lett; 2002 Sep; 89(12):125002. PubMed ID: 12225089 [TBL] [Abstract][Full Text] [Related]
10. Radiative loss and ion-neutral collisional effects in astrophysical plasmas. Popescu Braileanu B; Keppens R Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230217. PubMed ID: 38679058 [TBL] [Abstract][Full Text] [Related]
12. Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities. Lai SH; Ip WH Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046413. PubMed ID: 22181289 [TBL] [Abstract][Full Text] [Related]
13. Schlieren-cinematographic and holographic diagnostic of a laser-produced plasma in xenon. Hugenschmidt M; Vollrath K; Hirth A Appl Opt; 1972 Feb; 11(2):339-44. PubMed ID: 20111505 [TBL] [Abstract][Full Text] [Related]
14. Blast-wave-sphere interaction using a laser-produced plasma: an experiment motivated by supernova 1987A. Kang YG; Nishihara K; Nishimura H; Takabe H; Sunahara A; Norimatsu T; Nagai K; Kim H; Nakatsuka M; Kong HJ; Zabusky NJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):047402. PubMed ID: 11690182 [TBL] [Abstract][Full Text] [Related]
15. The microphysics of collisionless shock waves. Marcowith A; Bret A; Bykov A; Dieckman ME; Drury LO; Lembège B; Lemoine M; Morlino G; Murphy G; Pelletier G; Plotnikov I; Reville B; Riquelme M; Sironi L; Novo AS Rep Prog Phys; 2016 Apr; 79(4):046901. PubMed ID: 27007555 [TBL] [Abstract][Full Text] [Related]
16. Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. Schaeffer DB; Fox W; Haberberger D; Fiksel G; Bhattacharjee A; Barnak DH; Hu SX; Germaschewski K Phys Rev Lett; 2017 Jul; 119(2):025001. PubMed ID: 28753335 [TBL] [Abstract][Full Text] [Related]
17. Photoacoustic-pulse generation and propagation in a metal vapor. Tam AC; Zapka W; Chiang K; Imaino W Appl Opt; 1982 Jan; 21(1):69-73. PubMed ID: 20372402 [TBL] [Abstract][Full Text] [Related]
18. Velocity scaling of a shock wave reflected off a circular cylinder. Glazer E; Sadot O; Hadjadj A; Chaudhuri A Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066317. PubMed ID: 21797487 [TBL] [Abstract][Full Text] [Related]
20. Blast waves produced by interactions of femtosecond laser pulses with water. Li YT; Zhang J; Teng H; Li K; Peng XY; Jin Z; Lu X; Zheng ZY; Yu QZ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056403. PubMed ID: 12786283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]