These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18352449)

  • 1. Manipulating biphotonic qutrits.
    Lanyon BP; Weinhold TJ; Langford NK; O'Brien JL; Resch KJ; Gilchrist A; White AG
    Phys Rev Lett; 2008 Feb; 100(6):060504. PubMed ID: 18352449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projection of two biphoton qutrits onto a maximally entangled state.
    Halevy A; Megidish E; Shacham T; Dovrat L; Eisenberg HS
    Phys Rev Lett; 2011 Apr; 106(13):130502. PubMed ID: 21517363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Qutrit Randomized Benchmarking.
    Morvan A; Ramasesh VV; Blok MS; Kreikebaum JM; O'Brien K; Chen L; Mitchell BK; Naik RK; Santiago DI; Siddiqi I
    Phys Rev Lett; 2021 May; 126(21):210504. PubMed ID: 34114846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Realization of Two Qutrits Gate with Tunable Coupling in Superconducting Circuits.
    Luo K; Huang W; Tao Z; Zhang L; Zhou Y; Chu J; Liu W; Wang B; Cui J; Liu S; Yan F; Yung MH; Chen Y; Yan T; Yu D
    Phys Rev Lett; 2023 Jan; 130(3):030603. PubMed ID: 36763397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity qutrit entangling gates for superconducting circuits.
    Goss N; Morvan A; Marinelli B; Mitchell BK; Nguyen LB; Naik RK; Chen L; Jünger C; Kreikebaum JM; Santiago DI; Wallman JJ; Siddiqi I
    Nat Commun; 2022 Dec; 13(1):7481. PubMed ID: 36470858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
    Liu T; Xiong SJ; Cao XZ; Su QP; Yang CP
    Opt Lett; 2015 Dec; 40(23):5602-5. PubMed ID: 26625061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental characterization of two spatial qutrits using entanglement witnesses.
    Gutiérrez-Esparza AJ; Pimenta WM; Marques B; Matoso AA; Lucio M JL; Pádua S
    Opt Express; 2012 Nov; 20(24):26351-62. PubMed ID: 23187490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step resonant controlled-phase gate on distant transmon qutrits in different 1D superconducting resonators.
    Hua M; Tao MJ; Deng FG; Lu Long G
    Sci Rep; 2015 Oct; 5():14541. PubMed ID: 26486426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entanglement monogamy in three qutrit systems.
    Li Q; Cui J; Wang S; Long GL
    Sci Rep; 2017 May; 7(1):1946. PubMed ID: 28512296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Test of Compatibility-Loophole-Free Contextuality with Spatially Separated Entangled Qutrits.
    Hu XM; Chen JS; Liu BH; Guo Y; Huang YF; Zhou ZQ; Han YJ; Li CF; Guo GC
    Phys Rev Lett; 2016 Oct; 117(17):170403. PubMed ID: 27824461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of Quantum Correlations in a Two-Qutrit Spin System.
    Fu Y; Liu W; Ye X; Wang Y; Zhang C; Duan CK; Rong X; Du J
    Phys Rev Lett; 2022 Sep; 129(10):100501. PubMed ID: 36112462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and characterization of ultrabroadband polarization-frequency hyperentangled photons.
    Lu HH; Alshowkan M; Myilswamy KV; Weiner AM; Lukens JM; Peters NA
    Opt Lett; 2023 Nov; 48(22):6031-6034. PubMed ID: 37966781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of polarization entanglement via the quantum Zeno effect.
    Nodurft IC; Shaw HC; Glasser RT; Kirby BT; Searles TA
    Opt Express; 2022 Aug; 30(18):31971-31985. PubMed ID: 36242268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realization of the Contextuality-Nonlocality Tradeoff with a Qubit-Qutrit Photon Pair.
    Zhan X; Zhang X; Li J; Zhang Y; Sanders BC; Xue P
    Phys Rev Lett; 2016 Mar; 116(9):090401. PubMed ID: 26991157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits.
    Xu HK; Song C; Liu WY; Xue GM; Su FF; Deng H; Tian Y; Zheng DN; Han S; Zhong YP; Wang H; Liu YX; Zhao SP
    Nat Commun; 2016 Mar; 7():11018. PubMed ID: 27009972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.
    Schaibley JR; Burgers AP; McCracken GA; Duan LM; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2013 Apr; 110(16):167401. PubMed ID: 23679636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses.
    Yang CP; Su QP; Zhang FY; Zheng SB
    Opt Lett; 2014 Jun; 39(11):3312-5. PubMed ID: 24876041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An entanglement filter.
    Okamoto R; O'Brien JL; Hofmann HF; Nagata T; Sasaki K; Takeuchi S
    Science; 2009 Jan; 323(5913):483-5. PubMed ID: 19164743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.