These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18352488)

  • 1. Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses.
    Khonik SV; Granato AV; Joncich DM; Pompe A; Khonik VA
    Phys Rev Lett; 2008 Feb; 100(6):065501. PubMed ID: 18352488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the nature of the shear viscosity and shear modulus relaxation in metallic glasses.
    Tsyplakov AN; Khonik VA; Makarov AS; Mitrofanov YP; Afonin GV; Kobelev NP; Konchakov RA; Lysenko AV
    J Phys Condens Matter; 2013 Aug; 25(34):345402. PubMed ID: 23899581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation of the fragility and heat capacity jump in the supercooled liquid region with the shear modulus relaxation in metallic glasses.
    Makarov AS; Qiao JC; Kobelev NP; Aronin AS; Khonik VA
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33910186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interstitialcy theory of structural relaxation and related viscous flow of glasses.
    Granato AV; Khonik VA
    Phys Rev Lett; 2004 Oct; 93(15):155502. PubMed ID: 15524901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic approach for the understanding of the kinetics of heat effects induced by structural relaxation of metallic glasses.
    Makarov AS; Afonin GV; Aronin AS; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34942612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the thermodynamic potentials of metallic glasses and their relation to the defect structure.
    Makarov AS; Afonin GV; Qiao JC; Glezer AM; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2021 Aug; 33(43):. PubMed ID: 34325414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of interstitial-like defects in a computer model of glassy aluminum.
    Goncharova EV; Konchakov RA; Makarov AS; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2017 Aug; 29(30):305701. PubMed ID: 28556782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of elastic heterogeneity during aging in metallic glasses.
    Fan Y; Iwashita T; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062313. PubMed ID: 25019782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial clustering in metallic systems as a source for the formation of the icosahedral matrix and defects in the glassy state.
    Konchakov RA; Makarov AS; Kobelev NP; Glezer AM; Wilde G; Khonik VA
    J Phys Condens Matter; 2019 Sep; 31(38):385703. PubMed ID: 31195372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple kinetic parameter indicating the origin of the relaxations induced by point(-like) defects in metallic crystals and glasses.
    Makarov AS; Konchakov RA; Mitrofanov YP; Kretova MA; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2020 Nov; 32(49):495701. PubMed ID: 32914756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A connection between the structural α-relaxation and the β-relaxation found in bulk metallic glass-formers.
    Ngai KL; Wang Z; Gao XQ; Yu HB; Wang WH
    J Chem Phys; 2013 Jul; 139(1):014502. PubMed ID: 23822309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting Shear Transformation Events in Metallic Glasses.
    Xu B; Falk ML; Li JF; Kong LT
    Phys Rev Lett; 2018 Mar; 120(12):125503. PubMed ID: 29694058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evidence for thermal generation of interstitials in a metallic crystal near the melting temperature.
    Safonova EV; Mitrofanov YP; Konchakov RA; Yu Vinogradov A; Kobelev NP; Khonik VA
    J Phys Condens Matter; 2016 Jun; 28(21):215401. PubMed ID: 27143564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural relaxation affecting shear-transformation avalanches in metallic glasses.
    Niiyama T; Wakeda M; Shimokawa T; Ogata S
    Phys Rev E; 2019 Oct; 100(4-1):043002. PubMed ID: 31770901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity.
    Mitrofanov YP; Wang DP; Makarov AS; Wang WH; Khonik VA
    Sci Rep; 2016 Mar; 6():23026. PubMed ID: 26975587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition.
    Jakobsen B; Maggi C; Christensen T; Dyre JC
    J Chem Phys; 2008 Nov; 129(18):184502. PubMed ID: 19045409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses.
    Peng CX; Song KK; Wang L; Şopu D; Pauly S; Eckert J
    Sci Rep; 2016 Sep; 6():34340. PubMed ID: 27681052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The instantaneous shear modulus in the shoving model.
    Dyre JC; Wang WH
    J Chem Phys; 2012 Jun; 136(22):224108. PubMed ID: 22713037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of potential shear transformation zones in metallic glasses.
    Delogu F
    Phys Rev Lett; 2008 Jun; 100(25):255901. PubMed ID: 18643675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions.
    Hays CC; Kim CP; Johnson WL
    Phys Rev Lett; 2000 Mar; 84(13):2901-4. PubMed ID: 11018971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.