These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 18352554)
1. Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Alben S; Shelley MJ Phys Rev Lett; 2008 Feb; 100(7):074301. PubMed ID: 18352554 [TBL] [Abstract][Full Text] [Related]
2. Flapping dynamics of a flexible filament. Ait Abderrahmane H; Paidoussis MP; Fayed M; Ng HD Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066604. PubMed ID: 22304208 [TBL] [Abstract][Full Text] [Related]
3. Flapping dynamics of an inverted flag behind a cylinder. Ojo O; Kohtanen E; Jiang A; Brody J; Erturk A; Shoele K Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36179696 [TBL] [Abstract][Full Text] [Related]
4. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Zhang J; Childress S; Libchaber A; Shelley M Nature; 2000 Dec; 408(6814):835-9. PubMed ID: 11130717 [TBL] [Abstract][Full Text] [Related]
5. Fluid-flow-induced flutter of a flag. Argentina M; Mahadevan L Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1829-34. PubMed ID: 15684057 [TBL] [Abstract][Full Text] [Related]
6. Fluid-structure interaction simulation of an avian flight model. Ruck S; Oertel H J Exp Biol; 2010 Dec; 213(Pt 24):4180-92. PubMed ID: 21112999 [TBL] [Abstract][Full Text] [Related]
7. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection. Karimi A; Paul MR Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550 [TBL] [Abstract][Full Text] [Related]
8. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Matsuoka C; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451 [TBL] [Abstract][Full Text] [Related]
9. Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry. Matsuoka C; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066303. PubMed ID: 17280144 [TBL] [Abstract][Full Text] [Related]
11. Direct Scaling of Measure on Vortex Shedding through a Flapping Flag Device in the Open Channel around a Cylinder at De Bartolo S; Vittorio M; Francone A; Guido F; Leone E; Mastronardi VM; Notaro A; Tomasicchio GR Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800140 [TBL] [Abstract][Full Text] [Related]
12. Flapping wing flight can save aerodynamic power compared to steady flight. Pesavento U; Wang ZJ Phys Rev Lett; 2009 Sep; 103(11):118102. PubMed ID: 19792403 [TBL] [Abstract][Full Text] [Related]
13. Azimuthal field instability in a confined ferrofluid. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610 [TBL] [Abstract][Full Text] [Related]
14. When linear stability does not exclude nonlinear instability. Kevrekidis PG; Pelinovsky DE; Saxena A Phys Rev Lett; 2015 May; 114(21):214101. PubMed ID: 26066436 [TBL] [Abstract][Full Text] [Related]
15. Scaling of chaos in strongly nonlinear lattices. Mulansky M Chaos; 2014 Jun; 24(2):024401. PubMed ID: 24985455 [TBL] [Abstract][Full Text] [Related]
16. Nonparallel spatial stability of the boundary layer induced by Long's vortex on a solid plane perpendicular to its axis. Parras L; Fernandez-Feria R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036305. PubMed ID: 16241569 [TBL] [Abstract][Full Text] [Related]
17. Vortex-wake interactions of a flapping foil that models animal swimming and flight. Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254 [TBL] [Abstract][Full Text] [Related]
18. Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Dritschel DG; Scott RK; Macaskill C; Gottwald GA; Tran CV Phys Rev Lett; 2008 Aug; 101(9):094501. PubMed ID: 18851616 [TBL] [Abstract][Full Text] [Related]
19. Dynamics and stability of vortex-antivortex fronts in type-II superconductors. Baggio C; Howard M; van Saarloos W Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026209. PubMed ID: 15447567 [TBL] [Abstract][Full Text] [Related]
20. Quantitative theory of driven nonlinear brain dynamics. Roberts JA; Robinson PA Neuroimage; 2012 Sep; 62(3):1947-55. PubMed ID: 22652022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]