These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 18352703)
1. Dipole moment of PH+ and the atomic masses of 28Si, 31P by comparing cyclotron frequencies of two ions simultaneously trapped in a penning trap. Redshaw M; McDaniel J; Myers EG Phys Rev Lett; 2008 Mar; 100(9):093002. PubMed ID: 18352703 [TBL] [Abstract][Full Text] [Related]
2. Quartz resonators for penning traps toward mass spectrometry on the heaviest ions. Lohse S; Berrocal J; Böhland S; van de Laar J; Block M; Chenmarev S; Düllmann CE; Nagy S; Ramírez JG; Rodríguez D Rev Sci Instrum; 2020 Sep; 91(9):093202. PubMed ID: 33003790 [TBL] [Abstract][Full Text] [Related]
3. Masses of 130Te and 130Xe and double-beta-decay Q value of 130Te. Redshaw M; Mount BJ; Myers EG; Avignone FT Phys Rev Lett; 2009 May; 102(21):212502. PubMed ID: 19519099 [TBL] [Abstract][Full Text] [Related]
4. A quartz amplifier for high-sensitivity Fourier-transform ion-cyclotron-resonance measurements with trapped ions. Lohse S; Berrocal J; Block M; Chenmarev S; Cornejo JM; Ramírez JG; Rodríguez D Rev Sci Instrum; 2019 Jun; 90(6):063202. PubMed ID: 31254986 [TBL] [Abstract][Full Text] [Related]
5. An ion balance for ultra-high-precision atomic mass measurements. Rainville S; Thompson JK; Pritchard DE Science; 2004 Jan; 303(5656):334-8. PubMed ID: 14671311 [TBL] [Abstract][Full Text] [Related]
6. Ramsey method of separated oscillatory fields for high-precision penning trap mass spectrometry. George S; Baruah S; Blank B; Blaum K; Breitenfeldt M; Hager U; Herfurth F; Herlert A; Kellerbauer A; Kluge HJ; Kretzschmar M; Lunney D; Savreux R; Schwarz S; Schweikhard L; Yazidjian C Phys Rev Lett; 2007 Apr; 98(16):162501. PubMed ID: 17501414 [TBL] [Abstract][Full Text] [Related]
7. Ultraprecise atomic mass measurement of the alpha particle and 4He. Van Dyck RS; Zafonte SL; Van Liew S; Pinegar DB; Schwinberg PB Phys Rev Lett; 2004 Jun; 92(22):220802. PubMed ID: 15245208 [TBL] [Abstract][Full Text] [Related]
8. Phase-sensitive cyclotron frequency measurements at ultralow energies. Sturm S; Wagner A; Schabinger B; Blaum K Phys Rev Lett; 2011 Sep; 107(14):143003. PubMed ID: 22107189 [TBL] [Abstract][Full Text] [Related]
9. Mass and double-beta-decay Q value of 136Xe. Redshaw M; Wingfield E; McDaniel J; Myers EG Phys Rev Lett; 2007 Feb; 98(5):053003. PubMed ID: 17358854 [TBL] [Abstract][Full Text] [Related]
10. Direct high-precision measurement of the magnetic moment of the proton. Mooser A; Ulmer S; Blaum K; Franke K; Kracke H; Leiteritz C; Quint W; Rodegheri CC; Smorra C; Walz J Nature; 2014 May; 509(7502):596-9. PubMed ID: 24870545 [TBL] [Abstract][Full Text] [Related]
11. Cyclotron frequency shifts arising from polarization forces. Thompson JK; Rainville S; Pritchard DE Nature; 2004 Jul; 430(6995):58-61. PubMed ID: 15229595 [TBL] [Abstract][Full Text] [Related]
12. Deuteron-to-Proton Mass Ratio from Simultaneous Measurement of the Cyclotron Frequencies of H_{2}^{+} and D^{+}. Fink DJ; Myers EG Phys Rev Lett; 2021 Dec; 127(24):243001. PubMed ID: 34951801 [TBL] [Abstract][Full Text] [Related]
13. First use of high charge states for mass measurements of short-lived nuclides in a Penning trap. Ettenauer S; Simon MC; Gallant AT; Brunner T; Chowdhury U; Simon VV; Brodeur M; Chaudhuri A; Mané E; Andreoiu C; Audi G; López-Urrutia JR; Delheij P; Gwinner G; Lapierre A; Lunney D; Pearson MR; Ringle R; Ullrich J; Dilling J Phys Rev Lett; 2011 Dec; 107(27):272501. PubMed ID: 22243307 [TBL] [Abstract][Full Text] [Related]
14. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility. Reza A; Banerjee K; Das P; Ray K; Bandyopadhyay S; Dam B Rev Sci Instrum; 2017 Mar; 88(3):034705. PubMed ID: 28372439 [TBL] [Abstract][Full Text] [Related]
15. Q value of ;{115}In --> ;{115}sn(3/2;{+}): the lowest known energy beta decay. Mount BJ; Redshaw M; Myers EG Phys Rev Lett; 2009 Sep; 103(12):122502. PubMed ID: 19792427 [TBL] [Abstract][Full Text] [Related]
16. Direct measurement of the free cyclotron frequency of a single particle in a Penning trap. Ulmer S; Blaum K; Kracke H; Mooser A; Quint W; Rodegheri CC; Walz J Phys Rev Lett; 2011 Sep; 107(10):103002. PubMed ID: 21981500 [TBL] [Abstract][Full Text] [Related]
17. Detection of metastable electronic states by Penning trap mass spectrometry. Schüssler RX; Bekker H; Braß M; Cakir H; Crespo López-Urrutia JR; Door M; Filianin P; Harman Z; Haverkort MW; Huang WJ; Indelicato P; Keitel CH; König CM; Kromer K; Müller M; Novikov YN; Rischka A; Schweiger C; Sturm S; Ulmer S; Eliseev S; Blaum K Nature; 2020 May; 581(7806):42-46. PubMed ID: 32376960 [TBL] [Abstract][Full Text] [Related]
18. Compensation of the trap-induced quadrupole interaction in trapped Rydberg ions. Simeonov LS; Vitanov NV; Ivanov PA Sci Rep; 2019 May; 9(1):7340. PubMed ID: 31089243 [TBL] [Abstract][Full Text] [Related]
19. Letter to the Editor: New Values for Silicon Reference Materials, Certified for Isotope Abundance Ratios. De Bièvre P; Valkiers S; Peiser HS J Res Natl Inst Stand Technol; 1994; 99(2):201-202. PubMed ID: 37404709 [TBL] [Abstract][Full Text] [Related]
20. Relationship between the charge distribution and dipole moment functions of CO and the related molecules CS, SiO, and SiS. Harrison JF J Phys Chem A; 2006 Sep; 110(37):10848-57. PubMed ID: 16970381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]