BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18352860)

  • 1. Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells.
    Dayal D; Martin SM; Limoli CL; Spitz DR
    Biochem J; 2008 Jul; 413(1):185-91. PubMed ID: 18352860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability.
    Kim GJ; Fiskum GM; Morgan WF
    Cancer Res; 2006 Nov; 66(21):10377-83. PubMed ID: 17079457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation.
    Dayal D; Martin SM; Owens KM; Aykin-Burns N; Zhu Y; Boominathan A; Pain D; Limoli CL; Goswami PC; Domann FE; Spitz DR
    Radiat Res; 2009 Dec; 172(6):737-45. PubMed ID: 19929420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic instability induced by mutant succinate dehydrogenase subunit D (SDHD) is mediated by O2(-•) and H2O2.
    Owens KM; Aykin-Burns N; Dayal D; Coleman MC; Domann FE; Spitz DR
    Free Radic Biol Med; 2012 Jan; 52(1):160-6. PubMed ID: 22041456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential induction and activation of NF-kappaB transcription complexes in radiation-induced chromosomally unstable cell lines.
    Snyder AR; Morgan WF
    Environ Mol Mutagen; 2005; 45(2-3):177-87. PubMed ID: 15645469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to low-dose/low-LET ionizing radiation in mammalian cells harboring mutations in succinate dehydrogenase subunit C is governed by mitochondria-derived reactive oxygen species.
    Aykin-Burns N; Slane BG; Liu AT; Owens KM; O'Malley MS; Smith BJ; Domann FE; Spitz DR
    Radiat Res; 2011 Feb; 175(2):150-8. PubMed ID: 21268708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation.
    Suzuki K; Kodama S; Watanabe M
    Mutat Res; 2010 Jan; 683(1-2):29-34. PubMed ID: 19822159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-lasting genomic instability following arsenite exposure in mammalian cells: the role of reactive oxygen species.
    Sciandrello G; Mauro M; Catanzaro I; Saverini M; Caradonna F; Barbata G
    Environ Mol Mutagen; 2011 Aug; 52(7):562-8. PubMed ID: 21520292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opposite roles for p38MAPK-driven responses and reactive oxygen species in the persistence and resolution of radiation-induced genomic instability.
    Werner E; Wang H; Doetsch PW
    PLoS One; 2014; 9(10):e108234. PubMed ID: 25271419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of stable oxidative stress-resistant phenotypes in Chinese hamster fibroblasts chronically exposed to hydrogen peroxide or hyperoxia.
    Spitz DR; Sullivan SJ
    Methods Mol Biol; 2010; 610():183-99. PubMed ID: 20013179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of scavengers of active oxygen species on cell damage caused in CHO-K1 cells by phenylhydroquinone, an o-phenylphenol metabolite.
    Tayama S; Nakagawa Y
    Mutat Res; 1994 Jul; 324(3):121-31. PubMed ID: 7517511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bystander effects in UV-induced genomic instability: antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation.
    Dahle J; Kvam E; Stokke T
    J Carcinog; 2005 Aug; 4():11. PubMed ID: 16091149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage in cells exhibiting radiation-induced genomic instability.
    Keszenman DJ; Kolodiuk L; Baulch JE
    Mutagenesis; 2015 May; 30(3):451-8. PubMed ID: 25711497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.
    Piao MJ; Kang KA; Zhang R; Ko DO; Wang ZH; You HJ; Kim HS; Kim JS; Kang SS; Hyun JW
    Biochim Biophys Acta; 2008 Dec; 1780(12):1448-57. PubMed ID: 18761393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionizing radiation-induced genomic instability in CHO cells is followed by selection of radioresistant cell clones.
    Guryev DV; Osipov AN; Lizunova EY; Vorobyeva NY; Boeva OV
    Bull Exp Biol Med; 2009 May; 147(5):596-8. PubMed ID: 19907747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells.
    Baulch JE; Aypar U; Waters KM; Yang AJ; Morgan WF
    PLoS One; 2014; 9(9):e107722. PubMed ID: 25251398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased level of oxidative stress in genomically unstable cell clones.
    Dahle J; Kvam E
    J Photochem Photobiol B; 2004 Mar; 74(1):23-8. PubMed ID: 15043843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Menadione-resistant Chinese hamster cell variants are cross-resistant to hydrogen peroxide and exhibit stable chromosomal and biochemical alterations.
    Martins EA; Mori L; Birnboim HC; Meneghini R
    Mol Cell Biochem; 1992 Dec; 118(2):181-9. PubMed ID: 1293512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of catalase activity by repetitive low-grade H2O2 exposures protects fibroblasts from subsequent stress-induced apoptosis.
    Sen P; Mukherjee S; Bhaumik G; Das P; Ganguly S; Choudhury N; Raha S
    Mutat Res; 2003 Aug; 529(1-2):87-94. PubMed ID: 12943922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The death-inducing effect and genomic instability.
    Nagar S; Morgan WF
    Radiat Res; 2005 Mar; 163(3):316-23. PubMed ID: 15733038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.