These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18353335)

  • 1. Lateral stabilization improves walking in people with myelomeningocele.
    Chang CL; Ulrich BD
    J Biomech; 2008; 41(6):1317-23. PubMed ID: 18353335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of lateral stabilization on walking in young and old adults.
    Dean JC; Alexander NB; Kuo AD
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1919-26. PubMed ID: 18018687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of sensory inputs and motor demands on the control of the centre of mass velocity during gait initiation in humans.
    Chastan N; Westby GW; du Montcel ST; Do MC; Chong RK; Agid Y; Welter ML
    Neurosci Lett; 2010 Jan; 469(3):400-4. PubMed ID: 20026383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and metabolic requirements for active lateral stabilization in human walking.
    Donelan JM; Shipman DW; Kram R; Kuo AD
    J Biomech; 2004 Jun; 37(6):827-35. PubMed ID: 15111070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional requirements of walking according to the gait phase and onset of auditory stimuli.
    Abbud GA; Li KZ; DeMont RG
    Gait Posture; 2009 Aug; 30(2):227-32. PubMed ID: 19540124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The penguin waddling gait pattern has a more consistent step width than step length.
    Kurz MJ; Scott-Pandorf M; Arellano C; Olsen D; Whitaker G
    J Theor Biol; 2008 May; 252(2):272-6. PubMed ID: 18359044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of frontal plane motion of the hindlimbs in the unrestrained walking cat.
    Misiaszek JE
    J Neurophysiol; 2006 Oct; 96(4):1816-28. PubMed ID: 16823027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy consumption and gait analysis in children with myelomeningocele.
    Galli M; Crivellini M; Fazzi E; Motta F
    Funct Neurol; 2000; 15(3):171-5. PubMed ID: 11062846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of pelvis-HAT (head, arms and trunk) in anterior-posterior and medio-lateral directions during treadmill gait in preadolescents with/without Down syndrome.
    Kubo M; Ulrich B
    Gait Posture; 2006 Jun; 23(4):512-8. PubMed ID: 16039857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy cost of walking in low lumbar myelomeningocele.
    Moore CA; Nejad B; Novak RA; Dias LS
    J Pediatr Orthop; 2001; 21(3):388-91. PubMed ID: 11371826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Orthotic Gait Training with Isocentric Reciprocating Gait Orthosis on Walking in Children with Myelomeningocele.
    Arazpour M; Soleimani F; Sajedi F; Vameghi R; Bani MA; Gharib M; Samadian M
    Top Spinal Cord Inj Rehabil; 2017; 23(2):147-154. PubMed ID: 29339891
    [No Abstract]   [Full Text] [Related]  

  • 12. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed.
    Ijmker T; Houdijk H; Lamoth CJ; Beek PJ; van der Woude LH
    J Biomech; 2013 Sep; 46(13):2109-14. PubMed ID: 23895896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Down syndrome on three-dimensional motion during walking at different speeds.
    Agiovlasitis S; McCubbin JA; Yun J; Mpitsos G; Pavol MJ
    Gait Posture; 2009 Oct; 30(3):345-50. PubMed ID: 19595593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of whole-body frontal plane balance varies within a step during unperturbed walking.
    Sawers A; Hahn ME
    Gait Posture; 2012 Jun; 36(2):322-4. PubMed ID: 22465707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cues on gait variability--reducing the attentional cost of walking in people with Parkinson's disease.
    Baker K; Rochester L; Nieuwboer A
    Parkinsonism Relat Disord; 2008; 14(4):314-20. PubMed ID: 17988925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback.
    Nessler JA; Gilliland SJ
    Hum Mov Sci; 2009 Dec; 28(6):772-85. PubMed ID: 19796834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel biomechanical device improves gait pattern in patient with chronic nonspecific low back pain.
    Elbaz A; Mirovsky Y; Mor A; Enosh S; Debbi E; Segal G; Barzilay Y; Debi R
    Spine (Phila Pa 1976); 2009 Jul; 34(15):E507-12. PubMed ID: 19564755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost and physical strain of daily activities in adolescents and young adults with myelomeningocele.
    Bruinings AL; van den Berg-Emons HJ; Buffart LM; van der Heijden-Maessen HC; Roebroeck ME; Stam HJ
    Dev Med Child Neurol; 2007 Sep; 49(9):672-7. PubMed ID: 17718823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.