These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Perks AE; Schuler TD; Lee J; Ghiculete D; Chung DG; D'A Honey RJ; Pace KT Urology; 2008 Oct; 72(4):765-9. PubMed ID: 18674803 [TBL] [Abstract][Full Text] [Related]
3. Shock wave lithotripsy correlates with stone density on preoperative computerized tomography. Perks AE; Gotto G; Teichman JM J Urol; 2007 Sep; 178(3 Pt 1):912-5. PubMed ID: 17632139 [TBL] [Abstract][Full Text] [Related]
4. Hounsfield units on computerized tomography predict stone-free rates after extracorporeal shock wave lithotripsy. Pareek G; Armenakas NA; Fracchia JA J Urol; 2003 May; 169(5):1679-81. PubMed ID: 12686807 [TBL] [Abstract][Full Text] [Related]
5. Development of a scoring system from noncontrast computerized tomography measurements to improve the selection of upper ureteral stone for extracorporeal shock wave lithotripsy. Ng CF; Siu DY; Wong A; Goggins W; Chan ES; Wong KT J Urol; 2009 Mar; 181(3):1151-7. PubMed ID: 19152949 [TBL] [Abstract][Full Text] [Related]
6. Preoperative stone attenuation value predicts success after shock wave lithotripsy in children. McAdams S; Kim N; Dajusta D; Monga M; Ravish IR; Nerli R; Baker L; Shukla AR J Urol; 2010 Oct; 184(4 Suppl):1804-9. PubMed ID: 20728112 [TBL] [Abstract][Full Text] [Related]
7. Impact of renal anatomy on shock wave lithotripsy outcomes for lower pole kidney stones: results of a prospective multifactorial analysis controlled by computerized tomography. Torricelli FC; Marchini GS; Yamauchi FI; Danilovic A; Vicentini FC; Srougi M; Monga M; Mazzucchi E J Urol; 2015 Jun; 193(6):2002-7. PubMed ID: 25524240 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones. Mannil M; von Spiczak J; Hermanns T; Poyet C; Alkadhi H; Fankhauser CD J Urol; 2018 Oct; 200(4):829-836. PubMed ID: 29673945 [TBL] [Abstract][Full Text] [Related]
9. Single extracorporeal shock-wave lithotripsy for proximal ureter stones: Can CT texture analysis technique help predict the therapeutic effect? Xun Y; Li J; Geng Y; Liu Z; Yu X; Wang X; Xiao F; Li Z; Li C; Wang S Eur J Radiol; 2018 Oct; 107():84-89. PubMed ID: 30292278 [TBL] [Abstract][Full Text] [Related]
10. Extracorporeal shock wave lithotripsy success based on body mass index and Hounsfield units. Pareek G; Armenakas NA; Panagopoulos G; Bruno JJ; Fracchia JA Urology; 2005 Jan; 65(1):33-6. PubMed ID: 15667858 [TBL] [Abstract][Full Text] [Related]
11. Simple and practical nomograms for predicting the stone-free rate after shock wave lithotripsy in patients with a solitary upper ureteral stone. Niwa N; Matsumoto K; Miyahara M; Omura M; Kobayashi H; Kikuchi E; Miyajima A; Miyata K; Oya M World J Urol; 2017 Sep; 35(9):1455-1461. PubMed ID: 28220189 [TBL] [Abstract][Full Text] [Related]
12. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study. Largo R; Stolzmann P; Fankhauser CD; Poyet C; Wolfsgruber P; Sulser T; Alkadhi H; Winklhofer S Urolithiasis; 2016 Jun; 44(3):271-6. PubMed ID: 26391614 [TBL] [Abstract][Full Text] [Related]
13. Role of volume and attenuation value histogram of urinary stone on noncontrast helical computed tomography as predictor of fragility by extracorporeal shock wave lithotripsy. Yoshida S; Hayashi T; Ikeda J; Yoshinaga A; Ohno R; Ishii N; Okada T; Osada H; Honda N; Yamada T Urology; 2006 Jul; 68(1):33-7. PubMed ID: 16806419 [TBL] [Abstract][Full Text] [Related]
15. Multidetector computed tomography: role in determination of urinary stones composition and disintegration with extracorporeal shock wave lithotripsy--an in vitro study. el-Assmy A; Abou-el-Ghar ME; el-Nahas AR; Refaie HF; Sheir KZ Urology; 2011 Feb; 77(2):286-90. PubMed ID: 20719366 [TBL] [Abstract][Full Text] [Related]
16. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Pareek G; Hedican SP; Lee FT; Nakada SY Urology; 2005 Nov; 66(5):941-4. PubMed ID: 16286099 [TBL] [Abstract][Full Text] [Related]
17. A simple objective method to assess the radiopacity of urinary calculi and its use to predict extracorporeal shock wave lithotripsy outcomes. el-Gamal O; el-Badry A J Urol; 2009 Jul; 182(1):343-7. PubMed ID: 19447433 [TBL] [Abstract][Full Text] [Related]
18. [Value of Hounsfield unit on CT in prediction of stone-free rate of upper urinary calculi after extracorporeal shockwave lithotripsy]. Cheng G; Xie LP; Li XY Zhonghua Yi Xue Za Zhi; 2006 Jan; 86(4):276-8. PubMed ID: 16677510 [TBL] [Abstract][Full Text] [Related]
19. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Weld KJ; Montiglio C; Morris MS; Bush AC; Cespedes RD Urology; 2007 Dec; 70(6):1043-6; discussion 1046-7. PubMed ID: 18158009 [TBL] [Abstract][Full Text] [Related]
20. A Prediction Model Using Machine Learning Algorithm for Assessing Stone-Free Status after Single Session Shock Wave Lithotripsy to Treat Ureteral Stones. Choo MS; Uhmn S; Kim JK; Han JH; Kim DH; Kim J; Lee SH J Urol; 2018 Dec; 200(6):1371-1377. PubMed ID: 30036513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]