BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 18353428)

  • 21. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances.
    Halim M; Conte P; Piccolo A
    Chemosphere; 2003 Jul; 52(1):265-75. PubMed ID: 12729711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.
    Kidd PS; Monterroso C
    Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils.
    Hao X; Zhou D; Wang Y; Shi F; Jiang P
    Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments.
    McLean CM; Koller CE; Rodger JC; MacFarlane GR
    Sci Total Environ; 2009 May; 407(11):3588-96. PubMed ID: 19232676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.
    Tzvetkova N; Miladinova K; Ivanova K; Georgieva T; Geneva M; Markovska Y
    J Environ Biol; 2015 Jan; 36 Spec No():145-51. PubMed ID: 26591894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops.
    Zheljazkov VD; Warman PR
    Environ Pollut; 2004 Sep; 131(2):187-95. PubMed ID: 15234085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioavailability of heavy metals from polluted soils to plants.
    Chojnacka K; Chojnacki A; Górecka H; Górecki H
    Sci Total Environ; 2005 Jan; 337(1-3):175-82. PubMed ID: 15626388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site.
    Arienzo M; Adamo P; Cozzolino V
    Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil.
    Bose S; Jain A; Rai V; Ramanathan AL
    J Hazard Mater; 2008 Dec; 160(1):187-93. PubMed ID: 18433999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trace heavy metals associated with crude oil: a case study of Ebocha-8 oil-spill-polluted site in Niger Delta, Nigeria.
    Osuji LC; Onojake CM
    Chem Biodivers; 2004 Nov; 1(11):1708-15. PubMed ID: 17191811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables.
    Zheng N; Wang Q; Zheng D
    Sci Total Environ; 2007 Sep; 383(1-3):81-9. PubMed ID: 17573096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site.
    Barazani O; Sathiyamoorthy P; Manandhar U; Vulkan R; Golan-Goldhirsh A
    Chemosphere; 2004 Feb; 54(7):867-72. PubMed ID: 14637344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fractionation and elemental association of Zn, Cd and Pb in soils contaminated by Zn minings using a continuous-flow sequential extraction.
    Buanuam J; Shiowatana J; Pongsakul P
    J Environ Monit; 2005 Aug; 7(8):778-84. PubMed ID: 16049578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments.
    Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH
    Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A field lysimeter study of heavy metal movement down the profile of soils with multiple metal pollution during chelate-enhanced phytoremediation.
    Hu N; Luo Y; Wu L; Song J
    Int J Phytoremediation; 2007; 9(4):257-68. PubMed ID: 18246705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.