These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18353871)

  • 1. Dynamic myogenic autoregulation in the rat kidney: a whole-organ model.
    Kleinstreuer N; David T; Plank MJ; Endre Z
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1453-64. PubMed ID: 18353871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myogenic mechanisms in the kidney.
    Aukland K
    J Hypertens Suppl; 1989 Sep; 7(4):S71-6; discussion S77. PubMed ID: 2681599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of dynamics in renal autoregulation using volterra models.
    Hacioğlu R; Williamson GA; Abu-Amarah I; Griffin KA; Bidani AK
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2166-76. PubMed ID: 17073321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions contributing to kidney blood flow autoregulation.
    Cupples WA
    Curr Opin Nephrol Hypertens; 2007 Jan; 16(1):39-45. PubMed ID: 17143070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myogenic vasoconstriction in the rat kidney elicited by reducing perirenal pressure.
    Clausen G; Oien AH; Aukland K
    Acta Physiol Scand; 1992 Mar; 144(3):277-90. PubMed ID: 1585812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat.
    Ochodnický P; Henning RH; Buikema HJ; de Zeeuw D; Provoost AP; van Dokkum RP
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F625-33. PubMed ID: 20007352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of renal autoregulation.
    Cupples WA; Braam B
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1105-23. PubMed ID: 17229679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered renal microvascular response in Zucker obese rats.
    Hayashi K; Kanda T; Homma K; Tokuyama H; Okubo K; Takamatsu I; Tatematsu S; Kumagai H; Saruta T
    Metabolism; 2002 Dec; 51(12):1553-61. PubMed ID: 12489067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR.
    Raghavan R; Chen X; Yip KP; Marsh DJ; Chon KH
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F720-32. PubMed ID: 16219915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of renal denervation on dynamic autoregulation of renal blood flow.
    DiBona GF; Sawin LL
    Am J Physiol Renal Physiol; 2004 Jun; 286(6):F1209-18. PubMed ID: 14969998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Current results on the hormonal and autoregulatory control of renal blood flow].
    Steinhausen M
    Verh Dtsch Ges Pathol; 1989; 73():149-62. PubMed ID: 2482601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-varying properties of renal autoregulatory mechanisms.
    Zou R; Cupples WA; Yip KP; Holstein-Rathlou NH; Chon KH
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1112-20. PubMed ID: 12374335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting Interactions between the Renal Autoregulation Mechanisms in Time and Space.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):690-698. PubMed ID: 27244712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats.
    Chon KH; Chen YM; Holstein-Rathlou NH; Marmarelis VZ
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):342-53. PubMed ID: 9509750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of a macula densa feedback mechanism as a mediator of renal autoregulation.
    Navar LG; Bell PD; Burke TJ
    Kidney Int Suppl; 1982 Aug; 12():S157-64. PubMed ID: 6957671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The myogenic response in the microcirculation and its interaction with other control systems.
    Johnson PC
    J Hypertens Suppl; 1989 Sep; 7(4):S33-9; discussion S40. PubMed ID: 2681595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of renal blood flow autoregulation in rats.
    Holstein-Rathlou NH; Wagner AJ; Marsh DJ
    Kidney Int Suppl; 1991 Jun; 32():S98-101. PubMed ID: 1881063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.