These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18353973)

  • 61. Characterization of functional domains in human Claspin.
    Serçin O; Kemp MG
    Cell Cycle; 2011 May; 10(10):1599-606. PubMed ID: 21478680
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mrc1/Claspin: a new role for regulation of origin firing.
    Masai H; Yang CC; Matsumoto S
    Curr Genet; 2017 Oct; 63(5):813-818. PubMed ID: 28357499
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Role of Claspin in regulation of nucleotide excision repair factor DDB2.
    Praetorius-Ibba M; Wang QE; Wani G; El-Mahdy MA; Zhu Q; Qin S; Wani AA
    DNA Repair (Amst); 2007 May; 6(5):578-87. PubMed ID: 17196446
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Poly(ADP-ribose) binding to Chk1 at stalled replication forks is required for S-phase checkpoint activation.
    Min W; Bruhn C; Grigaravicius P; Zhou ZW; Li F; Krüger A; Siddeek B; Greulich KO; Popp O; Meisezahl C; Calkhoven CF; Bürkle A; Xu X; Wang ZQ
    Nat Commun; 2013; 4():2993. PubMed ID: 24356582
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Claspin is involved in S-phase checkpoint induced by benzo(a)pyrene in 16HBE cells.
    Qi Y; Zhao P; Fu J; Yao B; Yuan Z; Hu E; Zhou Z
    Toxicol In Vitro; 2009 Aug; 23(5):880-6. PubMed ID: 19464357
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional relationship between Claspin and Rad17.
    Yoshimura A; Akita M; Hosono Y; Abe T; Kobayashi M; Yamamoto K; Tada S; Seki M; Enomoto T
    Biochem Biophys Res Commun; 2011 Oct; 414(2):298-303. PubMed ID: 21945441
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural basis for recruitment of the CHK1 DNA damage kinase by the CLASPIN scaffold protein.
    Day M; Parry-Morris S; Houghton-Gisby J; Oliver AW; Pearl LH
    Structure; 2021 Jun; 29(6):531-539.e3. PubMed ID: 33789090
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Human Tim/Timeless-interacting protein, Tipin, is required for efficient progression of S phase and DNA replication checkpoint.
    Yoshizawa-Sugata N; Masai H
    J Biol Chem; 2007 Jan; 282(4):2729-40. PubMed ID: 17102137
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The mammalian DNA replication elongation checkpoint: implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses.
    Conti C; Seiler JA; Pommier Y
    Cell Cycle; 2007 Nov; 6(22):2760-7. PubMed ID: 17986860
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling.
    Beveridge RD; Staples CJ; Patil AA; Myers KN; Maslen S; Skehel JM; Boulton SJ; Collis SJ
    Cell Cycle; 2014; 13(21):3450-9. PubMed ID: 25485589
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase.
    Yoo HY; Kumagai A; Shevchenko A; Shevchenko A; Dunphy WG
    Cell; 2004 May; 117(5):575-88. PubMed ID: 15163406
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1.
    Kumagai A; Dunphy WG
    Nat Cell Biol; 2003 Feb; 5(2):161-5. PubMed ID: 12545175
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling.
    Lindsey-Boltz LA; Kemp MG; Capp C; Sancar A
    Cell Cycle; 2015; 14(1):99-108. PubMed ID: 25602520
    [TBL] [Abstract][Full Text] [Related]  

  • 74. PARP Activity Fine-tunes the DNA Replication Choreography of Chk1-depleted Cells.
    Calzetta NL; González Besteiro MA; Gottifredi V
    J Mol Biol; 2021 May; 433(10):166949. PubMed ID: 33744317
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ATR and Chk1 suppress a caspase-3-dependent apoptotic response following DNA replication stress.
    Myers K; Gagou ME; Zuazua-Villar P; Rodriguez R; Meuth M
    PLoS Genet; 2009 Jan; 5(1):e1000324. PubMed ID: 19119425
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase.
    Petermann E; Caldecott KW
    Cell Cycle; 2006 Oct; 5(19):2203-9. PubMed ID: 16969104
    [TBL] [Abstract][Full Text] [Related]  

  • 77. DNA-damage control: Claspin destruction turns off the checkpoint.
    Gewurz BE; Harper JW
    Curr Biol; 2006 Nov; 16(21):R932-4. PubMed ID: 17084694
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protein phosphatase 5 is required for ATR-mediated checkpoint activation.
    Zhang J; Bao S; Furumai R; Kucera KS; Ali A; Dean NM; Wang XF
    Mol Cell Biol; 2005 Nov; 25(22):9910-9. PubMed ID: 16260606
    [TBL] [Abstract][Full Text] [Related]  

  • 79. TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination.
    Zhu X; Xue J; Jiang X; Gong Y; Gao C; Cao T; Li Q; Bai L; Li Y; Xu G; Peng B; Xu X
    Nucleic Acids Res; 2022 Feb; 50(3):1517-1530. PubMed ID: 35048968
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Claspin: timing the cell cycle arrest when the genome is damaged.
    Freire R; van Vugt MA; Mamely I; Medema RH
    Cell Cycle; 2006 Dec; 5(24):2831-4. PubMed ID: 17172868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.