These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 18354013)

  • 1. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila.
    Krashes MJ; Waddell S
    J Neurosci; 2008 Mar; 28(12):3103-13. PubMed ID: 18354013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.
    Colomb J; Kaiser L; Chabaud MA; Preat T
    Genes Brain Behav; 2009 Jun; 8(4):407-15. PubMed ID: 19220480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An octopamine-mushroom body circuit modulates the formation of anesthesia-resistant memory in Drosophila.
    Wu CL; Shih MF; Lee PT; Chiang AS
    Curr Biol; 2013 Dec; 23(23):2346-54. PubMed ID: 24239122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in
    Zhang X; Noyes NC; Zeng J; Li Y; Davis RL
    J Neurosci; 2019 Nov; 39(46):9164-9172. PubMed ID: 31558620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirement of the combination of mushroom body γ lobe and α/β lobes for the retrieval of both aversive and appetitive early memories in Drosophila.
    Xie Z; Huang C; Ci B; Wang L; Zhong Y
    Learn Mem; 2013 Aug; 20(9):474-81. PubMed ID: 23955170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A late-phase, long-term memory trace forms in the γ neurons of Drosophila mushroom bodies after olfactory classical conditioning.
    Akalal DB; Yu D; Davis RL
    J Neurosci; 2010 Dec; 30(49):16699-708. PubMed ID: 21148009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal in vivo recording of dCREB2 dynamics in Drosophila long-term memory processing.
    Zhang J; Tanenhaus AK; Davis JC; Hanlon BM; Yin JC
    Neurobiol Learn Mem; 2015 Feb; 118():80-8. PubMed ID: 25460038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasting launches CRTC to facilitate long-term memory formation in Drosophila.
    Hirano Y; Masuda T; Naganos S; Matsuno M; Ueno K; Miyashita T; Horiuchi J; Saitoe M
    Science; 2013 Jan; 339(6118):443-6. PubMed ID: 23349290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning.
    Fulton D; Kemenes I; Andrew RJ; Benjamin PR
    Eur J Neurosci; 2005 Mar; 21(5):1347-58. PubMed ID: 15813944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential use of mushroom body neuron subsets during drosophila odor memory processing.
    Krashes MJ; Keene AC; Leung B; Armstrong JD; Waddell S
    Neuron; 2007 Jan; 53(1):103-15. PubMed ID: 17196534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila.
    Kim YC; Lee HG; Han KA
    J Neurosci; 2007 Jul; 27(29):7640-7. PubMed ID: 17634358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae.
    Honjo K; Furukubo-Tokunaga K
    J Neurosci; 2009 Jan; 29(3):852-62. PubMed ID: 19158309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Expression of Consolidated Memory through Drosophila Mushroom Body Subsets.
    Yang CH; Shih MF; Chang CC; Chiang MH; Shih HW; Tsai YL; Chiang AS; Fu TF; Wu CL
    PLoS Genet; 2016 May; 12(5):e1006061. PubMed ID: 27195782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel processing of appetitive short- and long-term memories in Drosophila.
    Trannoy S; Redt-Clouet C; Dura JM; Preat T
    Curr Biol; 2011 Oct; 21(19):1647-53. PubMed ID: 21962716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body.
    Wu CL; Xia S; Fu TF; Wang H; Chen YH; Leong D; Chiang AS; Tully T
    Nat Neurosci; 2007 Dec; 10(12):1578-86. PubMed ID: 17982450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory.
    Montague SA; Baker BS
    PLoS One; 2016; 11(10):e0164516. PubMed ID: 27764141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila.
    Plaçais PY; Trannoy S; Friedrich AB; Tanimoto H; Preat T
    Cell Rep; 2013 Nov; 5(3):769-80. PubMed ID: 24209748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A permissive role of mushroom body α/β core neurons in long-term memory consolidation in Drosophila.
    Huang C; Zheng X; Zhao H; Li M; Wang P; Xie Z; Wang L; Zhong Y
    Curr Biol; 2012 Nov; 22(21):1981-9. PubMed ID: 23063437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Light Is Required for Maintenance of Long-Term Memory in
    Inami S; Sato S; Kondo S; Tanimoto H; Kitamoto T; Sakai T
    J Neurosci; 2020 Feb; 40(7):1427-1439. PubMed ID: 31932417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila.
    Jacob PF; Waddell S
    Neuron; 2020 Jun; 106(6):977-991.e4. PubMed ID: 32289250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.