These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 18354553)

  • 1. Comparison of electromagnetic theory and various approximations for computing the absorption efficiency and single-scattering albedo of hexagonal columns.
    Baran AJ; Havemann S
    Appl Opt; 2000 Oct; 39(30):5560-8. PubMed ID: 18354553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods.
    Baran AJ; Yang P; Havemann S
    Appl Opt; 2001 Aug; 40(24):4376-86. PubMed ID: 18360478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region.
    Yang P; Wei H; Huang HL; Baum BA; Hu YX; Kattawar GW; Mishchenko MI; Fu Q
    Appl Opt; 2005 Sep; 44(26):5512-23. PubMed ID: 16161667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of circular cylinders as surrogates for hexagonal pristine ice crystals in scattering calculations at infrared wavelengths.
    Lee YK; Yang P; Mishchenko MI; Baum BA; Hu YX; Huang HL; Wiscombe WJ; Baran AJ
    Appl Opt; 2003 May; 42(15):2653-64. PubMed ID: 12777000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a light scattering solver applicable to particles of arbitrary shape on the basis of the surface-integral equations method of Müller type. I. Methodology, accuracy of calculation, and electromagnetic current on the particle surface.
    Nakajima TY; Nakajima T; Yoshimori K; Mishra SK; Tripathi SN
    Appl Opt; 2009 Jul; 48(19):3526-36. PubMed ID: 19571907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of spectral albedo for artificial snowpacks composed of spherical and nonspherical particles.
    Tanikawa T; Aoki T; Hori M; Hachikubo A; Abe O; Aniya M
    Appl Opt; 2006 Jul; 45(21):5310-9. PubMed ID: 16826268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders.
    Baran AJ
    Appl Opt; 2003 May; 42(15):2811-8. PubMed ID: 12777019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice-crystal absorption: a comparison between theory and implications for remote sensing.
    Baran AJ; Foot JS; Mitchell DL
    Appl Opt; 1998 Apr; 37(12):2207-15. PubMed ID: 18273143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integral light-scattering and absorption characteristics of large, nonspherical particles.
    Kokhanovsky AA; Macke A
    Appl Opt; 1997 Nov; 36(33):8785-90. PubMed ID: 18264428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles.
    Chen G; Yang P; Kattawar GW
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):785-90. PubMed ID: 18311250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.
    Macke A; Mishchenko MI
    Appl Opt; 1996 Jul; 35(21):4291-6. PubMed ID: 21102838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate methods for modeling the scattering properties of nonspherical particles: evaluation of the Wentzel-Kramers-Brillouin method.
    Klett JD; Sutherland RA
    Appl Opt; 1992 Jan; 31(3):373-86. PubMed ID: 20717415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Convergence of Numerical Computations for Both Exact and Approximate Solutions for Electromagnetic Scattering by Nonspherical Dielectric Particles.
    Yang P; Ding J; Panetta RL; Liou KN; Kattawar GW; Mishchenko M
    Electromagn Waves (Camb); 2019; 164():27-61. PubMed ID: 30846893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact solution of electromagnetic scattering by a three-dimensional hexagonal ice column obtained with the boundary-element method.
    Mano Y
    Appl Opt; 2000 Oct; 39(30):5541-6. PubMed ID: 18354551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction efficiency in the infrared (2-18 µm) of laboratory ice clouds: observations of scattering minima in the Christiansen bands of ice.
    Arnott WP; Dong YY; Hallett J
    Appl Opt; 1995 Jan; 34(3):541-51. PubMed ID: 20963149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals.
    Yang P; Liou KN
    Appl Opt; 1996 Nov; 35(33):6568-84. PubMed ID: 21127681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspherical extinction and absorption efficiencies.
    Welch RM; Cox SK
    Appl Opt; 1978 Oct; 17(19):3159-68. PubMed ID: 20203941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces.
    Iwasaki S; Okamoto H
    Appl Opt; 2001 Nov; 40(33):6121-9. PubMed ID: 18364911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical-optics solution to light scattering by droxtal ice crystals.
    Zhang Z; Yang P; Kattawar GW; Tsay SC; Baum BA; Hu Y; Heymsfield AJ; Reichardt J
    Appl Opt; 2004 Apr; 43(12):2490-9. PubMed ID: 15119619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium.
    Yin J; Pilon L
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2784-96. PubMed ID: 17047705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.