These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 18354619)

  • 1. Preparation of Fiber Optics for the Delivery of High-Energy High-Beam-Quality Nd:YAG Laser Pulses.
    Kuhn A; French P; Hand DP; Blewett IJ; Richmond M; Jones JD
    Appl Opt; 2000 Nov; 39(33):6136-43. PubMed ID: 18354619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.
    Richou B; Schertz I; Gobin I; Richou J
    Appl Opt; 1997 Mar; 36(7):1610-4. PubMed ID: 18250843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers.
    Dumitrache C; Rath J; Yalin AP
    Materials (Basel); 2014 Aug; 7(8):5700-5710. PubMed ID: 28788155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a fiber-optic laser delivery system capable of delivering 213 and 266 nm pulsed Nd:YAG laser radiation for tissue ablation in a fluid environment.
    Miller J; Yu XB; Yu PK; Cringle SJ; Yu DY
    Appl Opt; 2011 Feb; 50(6):876-85. PubMed ID: 21343967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient and compact long pulse Nd:YAG rod laser with 540 J of pulse energy for welding application.
    Choubey A; Vishwakarma SC; Misra P; Jain RK; Agrawal DK; Arya R; Upadhyaya BN; Oak SM
    Rev Sci Instrum; 2013 Jul; 84(7):073108. PubMed ID: 23902045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.
    Matsuura Y; Tsuchiuchi A; Noguchi H; Miyagi M
    Appl Opt; 2007 Mar; 46(8):1279-82. PubMed ID: 17318247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam quality after propagation of Nd:YAG laser light through large-core optical fibers.
    Kuhn A; Blewett IJ; Hand DP; Jones JD
    Appl Opt; 2000 Dec; 39(36):6754-60. PubMed ID: 18354689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The efficiency of bone ablation with an Nd:YAG laser beam delivered with a cooling spray: an in vitro study.
    Rizoiu IM; Levy GC
    Compendium; 1994 Jan; 15(1):106, 108, 110-1; quiz 112. PubMed ID: 8187144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.
    Shephard JD; Couny F; Russell PS; Jones JD; Knight JC; Hand DP
    Appl Opt; 2005 Jul; 44(21):4582-8. PubMed ID: 16047910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application systems for intracorporeal laser-induced shockwave lithotripsy using the Nd:YAG Q-switched laser.
    Frank F; Eichenlaub M; Hessel S; Wondrazek F
    J Clin Laser Med Surg; 1990 Oct; 8(5):51-5. PubMed ID: 10150126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Long Time Pulses of an Nd
    Ciupak P; Barłowski A; Sagan P; Jasiński T; Kuzma M
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High average power, high energy 1.55 μm ultra-short pulse laser beam delivery using large mode area hollow core photonic band-gap fiber.
    Peng X; Mielke M; Booth T
    Opt Express; 2011 Jan; 19(2):923-32. PubMed ID: 21263632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Delivery of megawatts high energy laser pulse with large core diameter silica fiber and its application in dual-wavelength laser-ablation laser-induced breakdown spectroscopy].
    Zhou Q; Peng FF; Li RH; Chen YQ; Yang XJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3392-5. PubMed ID: 24611409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of output near-field beam profile on launching conditions in graded-index fibers used in delivery systems for Nd:YAG lasers.
    Boechat AA; Su D; Jones JD
    Appl Opt; 1993 Jan; 32(3):291-7. PubMed ID: 20802687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fiber-optic transmission of stretched pulses from a Q-switched ruby laser.
    Pflüger S; Sellhorst M; Sturm V; Noll R
    Appl Opt; 1996 Sep; 35(25):5165-9. PubMed ID: 21102952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of optical damage mechanisms in hollow-core waveguides delivering nanosecond pulses from a Q-switched Nd:YAG laser.
    Parry JP; Stephens TJ; Shephard JD; Jones JD; Hand DP
    Appl Opt; 2006 Dec; 45(36):9160-7. PubMed ID: 17151755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical breakdown in fused silica and argon gas: application to Nd:YAG laser limiter.
    Galt S; Sjöberg M; Lopez Quiroga-Teixeiro M; Hård S
    Appl Opt; 2003 Jan; 42(3):579-84. PubMed ID: 12570279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses.
    Yilmaz O; Miyagi M; Matsuura Y
    Appl Opt; 2006 Sep; 45(27):7174-8. PubMed ID: 16946798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Crystal Laser-Heated Pedestal-Growth Sapphire Fibers for Er:YAG Laser Power Delivery.
    Nubling RK; Harrington JA
    Appl Opt; 1998 Jul; 37(21):4777-81. PubMed ID: 18285935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery.
    Ferhanoglu O; Yildirim M; Subramanian K; Ben-Yakar A
    Biomed Opt Express; 2014 Jul; 5(7):2023-36. PubMed ID: 25071946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.