These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18354793)

  • 1. Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles.
    de la Escosura A; Verwegen M; Sikkema FD; Comellas-Aragonès M; Kirilyuk A; Rasing T; Nolte RJ; Cornelissen JJ
    Chem Commun (Camb); 2008 Apr; (13):1542-4. PubMed ID: 18354793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor.
    Gálvez N; Sánchez P; Domínguez-Vera JM
    Dalton Trans; 2005 Aug; (15):2492-4. PubMed ID: 16025166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching.
    Hu M; Furukawa S; Ohtani R; Sukegawa H; Nemoto Y; Reboul J; Kitagawa S; Yamauchi Y
    Angew Chem Int Ed Engl; 2012 Jan; 51(4):984-8. PubMed ID: 22180131
    [No Abstract]   [Full Text] [Related]  

  • 4. Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids.
    Wu Y; Yang H; Shin HJ
    Biotechnol Lett; 2014 Mar; 36(3):515-21. PubMed ID: 24190479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monodisperse polymer-virus hybrid nanoparticles.
    Sikkema FD; Comellas-Aragonès M; Fokkink RG; Verduin BJ; Cornelissen JJ; Nolte RJ
    Org Biomol Chem; 2007 Jan; 5(1):54-7. PubMed ID: 17164905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus-like particles templated by DNA micelles: a general method for loading virus nanocarriers.
    Kwak M; Minten IJ; Anaya DM; Musser AJ; Brasch M; Nolte RJ; Müllen K; Cornelissen JJ; Herrmann A
    J Am Chem Soc; 2010 Jun; 132(23):7834-5. PubMed ID: 20481536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the energy landscape of virus self-assembly to generate kinetically trapped nanoparticles.
    Burns K; Mukherjee S; Keef T; Johnson JM; Zlotnick A
    Biomacromolecules; 2010 Feb; 11(2):439-42. PubMed ID: 20136150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and frictional properties of nanoparticle monolayers grafted on functionalized mica substrates.
    Banquy X; Zhu XX; Giasson S
    J Phys Chem B; 2008 Oct; 112(39):12208-16. PubMed ID: 18774849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exfoliated Pt-clay/Nafion nanocomposite membrane for self-humidifying polymer electrolyte fuel cells.
    Zhang W; Li MK; Yue PL; Gao P
    Langmuir; 2008 Mar; 24(6):2663-70. PubMed ID: 18254647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of lipopolysaccharide coating on clay particle wettability.
    Chen G; Zhu H
    Colloids Surf B Biointerfaces; 2004 May; 35(2):143-7. PubMed ID: 15261047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor.
    Cinti S; Cusenza R; Moscone D; Arduini F
    Talanta; 2018 Sep; 187():59-64. PubMed ID: 29853066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal and lateral interactions between thermosensitive nanoparticle monolayers in water.
    Banquy X; Charrault E; Giasson S
    J Phys Chem B; 2010 Aug; 114(30):9721-8. PubMed ID: 20614943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids.
    Aniagyei SE; Kennedy CJ; Stein B; Willits DA; Douglas T; Young MJ; De M; Rotello VM; Srisathiyanarayanan D; Kao CC; Dragnea B
    Nano Lett; 2009 Jan; 9(1):393-8. PubMed ID: 19090695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals.
    Cao M; Wu X; He X; Hu C
    Chem Commun (Camb); 2005 May; (17):2241-3. PubMed ID: 15856109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations.
    Bahadur R; Russell LM
    J Chem Phys; 2008 Sep; 129(9):094508. PubMed ID: 19044878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of cobalt-Prussian Blue nanoparticles in a biopolymer matrix.
    Collins AM; Mann S; Hall SR
    Nanoscale; 2010 Nov; 2(11):2370-2. PubMed ID: 20877859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gd-Si oxide mesoporous nanoparticles with pre-formed morphology prepared from a Prussian blue analogue template.
    Cabrera-García A; Vidal-Moya A; Bernabeu Á; Sánchez-González J; Fernández E; Botella P
    Dalton Trans; 2015 Aug; 44(31):14034-41. PubMed ID: 26165691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchically superstructured prussian blue analogues: spontaneous assembly synthesis and applications as pseudocapacitive materials.
    Yue Y; Zhang Z; Binder AJ; Chen J; Jin X; Overbury SH; Dai S
    ChemSusChem; 2015 Jan; 8(1):177-83. PubMed ID: 25385481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.