These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 18354806)
1. One-step solid-state thermolysis of a metal-organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chen L; Bai J; Wang C; Pan Y; Scheer M; You X Chem Commun (Camb); 2008 Apr; (13):1581-3. PubMed ID: 18354806 [TBL] [Abstract][Full Text] [Related]
2. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes. Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103 [TBL] [Abstract][Full Text] [Related]
3. On the performance of Cu-BTC metal organic framework for carbon tetrachloride gas removal. Calero S; Martín-Calvo A; Hamad S; García-Pérez E Chem Commun (Camb); 2011 Jan; 47(1):508-10. PubMed ID: 20972496 [TBL] [Abstract][Full Text] [Related]
4. Relevant synthesis parameters for the sequential catalytic growth of carbon nanotubes. Jourdain V; Paillet M; Almairac R; Loiseau A; Bernier P J Phys Chem B; 2005 Feb; 109(4):1380-6. PubMed ID: 16851106 [TBL] [Abstract][Full Text] [Related]
5. ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal-organic framework. Huang L; Joshi KL; van Duin AC; Bandosz TJ; Gubbins KE Phys Chem Chem Phys; 2012 Aug; 14(32):11327-32. PubMed ID: 22796865 [TBL] [Abstract][Full Text] [Related]
6. Mechanochemical synthesis of an yttrium based metal-organic framework. Singh NK; Hardi M; Balema VP Chem Commun (Camb); 2013 Feb; 49(10):972-4. PubMed ID: 23128845 [TBL] [Abstract][Full Text] [Related]
7. Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Yin J; Yang G; Wang H; Chen Y Chem Commun (Camb); 2007 Nov; (44):4614-6. PubMed ID: 17989809 [TBL] [Abstract][Full Text] [Related]
8. A luminescent microporous metal-organic framework for the recognition and sensing of anions. Chen B; Wang L; Zapata F; Qian G; Lobkovsky EB J Am Chem Soc; 2008 May; 130(21):6718-9. PubMed ID: 18452294 [TBL] [Abstract][Full Text] [Related]
9. Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: synthesis and metal templating. Tao L; Chen G; Mantovani G; York S; Haddleton DM Chem Commun (Camb); 2006 Dec; (47):4949-51. PubMed ID: 17136257 [TBL] [Abstract][Full Text] [Related]
10. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289 [TBL] [Abstract][Full Text] [Related]
11. A series of (6,6)-connected porous lanthanide−organic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. Jiang HL; Tsumori N; Xu Q Inorg Chem; 2010 Nov; 49(21):10001-6. PubMed ID: 20925407 [TBL] [Abstract][Full Text] [Related]
12. A simple method for the containment and purification of filled open-ended single wall carbon nanotubes using C60 molecules. Shao L; Lin TW; Tobias G; Green ML Chem Commun (Camb); 2008 May; (18):2164-6. PubMed ID: 18438503 [TBL] [Abstract][Full Text] [Related]
13. Process synthesis and optimization for the production of carbon nanostructures. Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and C-C coupling reactivity of a dinuclear Ni(i)-Ni(i) complex supported by a terphenyl diphosphine. Velian A; Lin S; Miller AJ; Day MW; Agapie T J Am Chem Soc; 2010 May; 132(18):6296-7. PubMed ID: 20397653 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of copper-1,3,5-benzenetricarboxylate metal-organic framework (Cu-MOF) as a selective sorbent for Lewis-base analytes. Harvey SD; Eckberg AD; Thallapally PK J Sep Sci; 2011 Sep; 34(18):2418-26. PubMed ID: 21812111 [TBL] [Abstract][Full Text] [Related]
16. Multi-walled carbon nanotubes and metal-organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Wang Y; Wu Y; Xie J; Ge H; Hu X Analyst; 2013 Sep; 138(17):5113-20. PubMed ID: 23853779 [TBL] [Abstract][Full Text] [Related]
17. An unprecedented dynamic porous metal-organic framework assembled from fivefold interlocked closed nanotubes with selective gas adsorption behaviors. Ju P; Jiang L; Lu TB Chem Commun (Camb); 2013 Mar; 49(18):1820-2. PubMed ID: 23358543 [TBL] [Abstract][Full Text] [Related]
18. Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. Jones CP; Jurkschat K; Crossley A; Compton RG; Riehl BL; Banks CE Langmuir; 2007 Aug; 23(18):9501-4. PubMed ID: 17655265 [TBL] [Abstract][Full Text] [Related]
19. Simple synthesis of multiwalled carbon nanotubes from natural resources. Endo M; Takeuchi K; Kim YA; Park KC; Ichiki T; Hayashi T; Fukuyo T; Iinou S; Su DS; Terrones M; Dresselhaus MS ChemSusChem; 2008; 1(10):820-2. PubMed ID: 18803176 [No Abstract] [Full Text] [Related]
20. A mesoporous metal-organic framework with permanent porosity. Wang XS; Ma S; Sun D; Parkin S; Zhou HC J Am Chem Soc; 2006 Dec; 128(51):16474-5. PubMed ID: 17177376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]