BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 18355006)

  • 1. Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface.
    Shi Q; Liang H; Feng D; Wang J; Stucky GD
    J Am Chem Soc; 2008 Apr; 130(15):5034-5. PubMed ID: 18355006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals.
    Wang DS; Xie T; Peng Q; Zhang SY; Chen J; Li YD
    Chemistry; 2008; 14(8):2507-13. PubMed ID: 18189257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of nanofibrous metal oxides on microfibers: a macrostructured catalyst system functionalized with nanoscale fibrous metal oxides.
    Ogihara H; Sadakane M; Wu Q; Nodasaka Y; Ueda W
    Chem Commun (Camb); 2007 Oct; (39):4047-9. PubMed ID: 17912411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal method for the fabrication of detachable ultrathin films of several transition metal oxides.
    Singh S; Festin M; Barden WR; Xi L; Francis JT; Kruse P
    ACS Nano; 2008 Nov; 2(11):2363-73. PubMed ID: 19206404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-flux ceramic membranes with a nanomesh of metal oxide nanofibers.
    Ke XB; Zheng ZF; Liu HW; Zhu HY; Gao XP; Zhang LX; Xu NP; Wang H; Zhao HJ; Shi J; Ratinac KR
    J Phys Chem B; 2008 Apr; 112(16):5000-6. PubMed ID: 18386864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres.
    Sun X; Liu J; Li Y
    Chemistry; 2006 Feb; 12(7):2039-47. PubMed ID: 16374888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copolymer-controlled homogeneous precipitation for the synthesis of porous microfibers of alumina.
    Bai P; Su F; Wu P; Wang L; Lee FY; Lv L; Yan ZF; Zhao XS
    Langmuir; 2007 Apr; 23(8):4599-605. PubMed ID: 17335261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application.
    Lee JS; Kwon OS; Park SJ; Park EY; You SA; Yoon H; Jang J
    ACS Nano; 2011 Oct; 5(10):7992-8001. PubMed ID: 21905727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of macroporous carbon nanofibers with macroscopic openings in the surfaces and their applications.
    Lee S; Lee K; Moon GD; Won YS; Yoon YJ; Park SS; Kim YR; Jeong U
    Nanotechnology; 2009 Nov; 20(44):445702. PubMed ID: 19801775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends.
    Peng M; Li D; Shen L; Chen Y; Zheng Q; Wang H
    Langmuir; 2006 Oct; 22(22):9368-74. PubMed ID: 17042555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of porous carbon fibers from collagen fiber.
    Deng D; Liao X; Shi B
    ChemSusChem; 2008; 1(4):298-301. PubMed ID: 18605093
    [No Abstract]   [Full Text] [Related]  

  • 12. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output.
    Maruyama J; Abe I
    Chem Commun (Camb); 2007 Jul; (27):2879-81. PubMed ID: 17609807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel nylon-supported organic-inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent.
    Xi F; Wu J; Lin X
    J Chromatogr A; 2006 Aug; 1125(1):38-51. PubMed ID: 16806239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay of carbon-silica sources on the formation of hierarchical porous composite materials for biological applications such as lipase immobilization.
    Higuita M; Bernal C; Mesa M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():199-206. PubMed ID: 25175205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid.
    Wu XL; Chen LL; Xin S; Yin YX; Guo YG; Kong QS; Xia YZ
    ChemSusChem; 2010 Jun; 3(6):703-7. PubMed ID: 20480495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic synthesis of monodisperse nanoporous oxide particles and control of hierarchical pore structure.
    Carroll NJ; Crowder PF; Pylypenko S; Patterson W; Ratnaweera DR; Perahia D; Atanassov P; Petsev DN
    ACS Appl Mater Interfaces; 2013 May; 5(9):3524-9. PubMed ID: 23387998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels.
    Blas H; Save M; Pasetto P; Boissière C; Sanchez C; Charleux B
    Langmuir; 2008 Nov; 24(22):13132-7. PubMed ID: 18947208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of methods for determining the pore size distribution and pore-network connectivity of porous carbons.
    Cai Q; Buts A; Biggs MJ; Seaton NA
    Langmuir; 2007 Jul; 23(16):8430-40. PubMed ID: 17602506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of three-dimensional ordered hierarchically porous metal oxides via a hybridized epoxide assisted/colloidal crystal templating approach.
    Davis M; Ramirez DA; Hope-Weeks LJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7786-92. PubMed ID: 23926949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonization of waste PVC to develop porous carbon material without further activation.
    Qiao WM; Song Y; Yoon SH; Korai Y; Mochida I; Yoshiga S; Fukuda H; Yamazaki A
    Waste Manag; 2006; 26(6):592-8. PubMed ID: 16182519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.