These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18355037)

  • 1. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation.
    Lai B; Zhao G; London E
    Biochemistry; 2008 Apr; 47(15):4565-74. PubMed ID: 18355037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains.
    Zhao G; London E
    Biochemistry; 2005 Mar; 44(11):4488-98. PubMed ID: 15766279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane translocation of charged residues at the tips of hydrophobic helices in the T domain of diphtheria toxin.
    Ren J; Sharpe JC; Collier RJ; London E
    Biochemistry; 1999 Jan; 38(3):976-84. PubMed ID: 9893993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of helices 5-7 in membrane-inserted diphtheria toxin T domain: identification and insertion boundaries of two hydrophobic sequences that do not form a stable transmembrane hairpin.
    Rosconi MP; London E
    J Biol Chem; 2002 May; 277(19):16517-27. PubMed ID: 11859081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5-7 form stable nonclassical inserted segments on the cis side of the bilayer.
    Rosconi MP; Zhao G; London E
    Biochemistry; 2004 Jul; 43(28):9127-39. PubMed ID: 15248770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants.
    Malenbaum SE; Collier RJ; London E
    Biochemistry; 1998 Dec; 37(51):17915-22. PubMed ID: 9922159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying transmembrane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain.
    Kachel K; Ren J; Collier RJ; London E
    J Biol Chem; 1998 Sep; 273(36):22950-6. PubMed ID: 9722516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Trp mutations to evaluate the conformational behavior and membrane insertion of A and B chains in whole diphtheria toxin.
    Wang Y; Kachel K; Pablo L; London E
    Biochemistry; 1997 Dec; 36(51):16300-8. PubMed ID: 9405065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topography of diphtheria toxin A chain inserted into lipid vesicles.
    Hayashibara M; London E
    Biochemistry; 2005 Feb; 44(6):2183-96. PubMed ID: 15697244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms.
    Wang J; London E
    Biochemistry; 2009 Nov; 48(43):10446-56. PubMed ID: 19780588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether.
    Wang J; Rosconi MP; London E
    Biochemistry; 2006 Jul; 45(26):8124-34. PubMed ID: 16800637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior.
    Hammond K; Caputo GA; London E
    Biochemistry; 2002 Mar; 41(9):3243-53. PubMed ID: 11863463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width.
    Wang Y; Malenbaum SE; Kachel K; Zhan H; Collier RJ; London E
    J Biol Chem; 1997 Oct; 272(40):25091-8. PubMed ID: 9312118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsecond Simulations of the Diphtheria Toxin Translocation Domain in Association with Anionic Lipid Bilayers.
    Flores-Canales JC; Kurnikova M
    J Phys Chem B; 2015 Sep; 119(36):12074-85. PubMed ID: 26305016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin.
    Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS
    Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction.
    Montagner C; Perier A; Pichard S; Vernier G; Ménez A; Gillet D; Forge V; Chenal A
    Biochemistry; 2007 Feb; 46(7):1878-87. PubMed ID: 17249698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane protein insertion regulated by bringing electrostatic and hydrophobic interactions into play. A case study with the translocation domain of diphtheria toxin.
    Chenal A; Savarin P; Nizard P; Guillain F; Gillet D; Forge V
    J Biol Chem; 2002 Nov; 277(45):43425-32. PubMed ID: 12193591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain.
    Kyrychenko A; Posokhov YO; Rodnin MV; Ladokhin AS
    Biochemistry; 2009 Aug; 48(32):7584-94. PubMed ID: 19588969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies.
    Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ
    Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy.
    Chenal A; Prongidi-Fix L; Perier A; Aisenbrey C; Vernier G; Lambotte S; Haertlein M; Dauvergne MT; Fragneto G; Bechinger B; Gillet D; Forge V; Ferrand M
    J Mol Biol; 2009 Sep; 391(5):872-83. PubMed ID: 19576225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.