These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 18355132)
1. Ocular gelling microspheres: in vitro precorneal retention time and drug permeation through reconstituted corneal epithelium. Giannola LI; de Caro V; Giandalia G; Siragusa MG; Cordone L J Ocul Pharmacol Ther; 2008 Apr; 24(2):186-96. PubMed ID: 18355132 [TBL] [Abstract][Full Text] [Related]
2. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: Innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Destruel PL; Zeng N; Seguin J; Douat S; Rosa F; Brignole-Baudouin F; Dufaÿ S; Dufaÿ-Wojcicki A; Maury M; Mignet N; Boudy V Int J Pharm; 2020 Jan; 574():118734. PubMed ID: 31705970 [TBL] [Abstract][Full Text] [Related]
3. The effect of the corneal epithelium on the intraocular penetration of fluoroquinolone ophthalmic solution. Fukuda M; Inoue A; Sasaki K; Takahashi N Jpn J Ophthalmol; 2004; 48(2):93-6. PubMed ID: 15060787 [TBL] [Abstract][Full Text] [Related]
4. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability. Zeng W; Li Q; Wan T; Liu C; Pan W; Wu Z; Zhang G; Pan J; Qin M; Lin Y; Wu C; Xu Y Colloids Surf B Biointerfaces; 2016 May; 141():28-35. PubMed ID: 26820107 [TBL] [Abstract][Full Text] [Related]
5. Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system. Sayed EG; Hussein AK; Khaled KA; Ahmed OA Drug Des Devel Ther; 2015; 9():1427-35. PubMed ID: 25792803 [TBL] [Abstract][Full Text] [Related]
6. Improved intraocular bioavailability of ganciclovir by mucoadhesive polymer based ocular microspheres: development and simulation process in Wistar rats. Kapanigowda UG; Nagaraja SH; Ramaiah B; Boggarapu PR Daru; 2015 Oct; 23():49. PubMed ID: 26497653 [TBL] [Abstract][Full Text] [Related]
8. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Singh J; Chhabra G; Pathak K Drug Dev Ind Pharm; 2014 Sep; 40(9):1223-32. PubMed ID: 23837522 [TBL] [Abstract][Full Text] [Related]
9. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Gratieri T; Gelfuso GM; de Freitas O; Rocha EM; Lopez RF Eur J Pharm Biopharm; 2011 Oct; 79(2):320-7. PubMed ID: 21641994 [TBL] [Abstract][Full Text] [Related]
10. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Almeida H; Amaral MH; Lobão P; Lobo JM Drug Discov Today; 2014 Apr; 19(4):400-12. PubMed ID: 24120893 [TBL] [Abstract][Full Text] [Related]
11. Comparison of voriconazole concentration in the aqueous humor and vitreous between non-scraped and scraped corneal epithelium groups after topical 1% voriconazole application. Wei LC; Tsai TC; Tsai HY; Wang CY; Shen YC Curr Eye Res; 2010 Jul; 35(7):573-9. PubMed ID: 20597643 [TBL] [Abstract][Full Text] [Related]
12. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Pathak MK; Chhabra G; Pathak K Drug Dev Ind Pharm; 2013 May; 39(5):780-90. PubMed ID: 22873799 [TBL] [Abstract][Full Text] [Related]
13. Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Di Colo G; Burgalassi S; Chetoni P; Fiaschi MP; Zambito Y; Saettone MF Int J Pharm; 2001 Mar; 215(1-2):101-11. PubMed ID: 11250096 [TBL] [Abstract][Full Text] [Related]
14. Oxprenolol-loaded bioadhesive microspheres: preparation and in vitro/in vivo characterization. Preda M; Leucuta SE J Microencapsul; 2003; 20(6):777-89. PubMed ID: 14594666 [TBL] [Abstract][Full Text] [Related]
15. Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Al-Kassas RS; El-Khatib MM Drug Deliv; 2009 Apr; 16(3):145-52. PubMed ID: 19514974 [TBL] [Abstract][Full Text] [Related]
16. Bioavailability and anticataract effects of a topical ocular drug delivery system containing disulfiram and hydroxypropyl-beta-cyclodextrin on selenite-treated rats. Wang S; Li D; Ito Y; Nabekura T; Wang S; Zhang J; Wu C Curr Eye Res; 2004 Jul; 29(1):51-8. PubMed ID: 15370367 [TBL] [Abstract][Full Text] [Related]
17. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E₂-induced ocular inflammation. Mathurm M; Gilhotra RM Drug Deliv; 2011 Jan; 18(1):54-64. PubMed ID: 20718601 [TBL] [Abstract][Full Text] [Related]
18. Preparation and evaluation of in situ gelling ophthalmic drug delivery system for methazolamide. Qian Y; Wang F; Li R; Zhang Q; Xu Q Drug Dev Ind Pharm; 2010 Nov; 36(11):1340-7. PubMed ID: 20849349 [TBL] [Abstract][Full Text] [Related]
19. Controlled drug delivery for glaucoma therapy using montmorillonite/Eudragit microspheres as an ion-exchange carrier. Tian S; Li J; Tao Q; Zhao Y; Lv Z; Yang F; Duan H; Chen Y; Zhou Q; Hou D Int J Nanomedicine; 2018; 13():415-428. PubMed ID: 29391798 [TBL] [Abstract][Full Text] [Related]
20. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Tayel SA; El-Nabarawi MA; Tadros MI; Abd-Elsalam WH Int J Pharm; 2013 Feb; 443(1-2):293-305. PubMed ID: 23333217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]