BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

738 related articles for article (PubMed ID: 18355968)

  • 1. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.
    Kuenzel T; Wirth MJ; Luksch H; Wagner H; Mey J
    Brain Res; 2009 Dec; 1302():64-75. PubMed ID: 19766604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic inputs to granule cells of the dorsal cochlear nucleus.
    Balakrishnan V; Trussell LO
    J Neurophysiol; 2008 Jan; 99(1):208-19. PubMed ID: 17959739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic physiology in the cochlear nucleus angularis of the chick.
    MacLeod KM; Carr CE
    J Neurophysiol; 2005 May; 93(5):2520-9. PubMed ID: 15615833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken.
    Fukui I; Ohmori H
    J Physiol; 2003 Apr; 548(Pt 1):219-32. PubMed ID: 12576492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus.
    Rosenberger MH; Fremouw T; Casseday JH; Covey E
    J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane properties that shape the auditory code in three nuclei of the central nervous system.
    Schwarz DW; Tennigkeit F; Adam T; Finlayson P; Puil E
    J Otolaryngol; 1998 Dec; 27(6):311-7. PubMed ID: 9857314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of the avian nucleus magnocellularis from the auditory anlage.
    Hendricks SJ; Rubel EW; Nishi R
    J Comp Neurol; 2006 Oct; 498(4):433-42. PubMed ID: 16874806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarization-activated (I) currents in auditory brainstem neurons of normal and congenitally deaf mice.
    Leao RN; Svahn K; Berntson A; Walmsley B
    Eur J Neurosci; 2005 Jul; 22(1):147-57. PubMed ID: 16029204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal differentiation of the early embryonic auditory hindbrain of the chicken in primary culture.
    Kuenzel T; Mönig B; Wagner H; Mey J; Luksch H
    Eur J Neurosci; 2007 Feb; 25(4):974-84. PubMed ID: 17331194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and deactivation of voltage-dependent K+ channels during synaptically driven action potentials in the MNTB.
    Klug A; Trussell LO
    J Neurophysiol; 2006 Sep; 96(3):1547-55. PubMed ID: 16775198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis.
    Hamlet WR; Liu YW; Tang ZQ; Lu Y
    Front Neural Circuits; 2014; 8():51. PubMed ID: 24904297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages.
    Momose-Sato Y; Glover JC; Sato K
    J Neurophysiol; 2006 Oct; 96(4):1949-62. PubMed ID: 16790599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle.
    Lippe W; Rubel EW
    J Comp Neurol; 1985 Jul; 237(2):273-89. PubMed ID: 4031125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of chicken vestibular nucleus neurons to unilateral vestibular ganglionectomy.
    Shao M; Popratiloff A; Yi J; Lerner A; Hirsch JC; Peusner KD
    Neuroscience; 2009 Jul; 161(4):988-1007. PubMed ID: 19375485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical membrane properties of trapezoid body neurons in the rat auditory brain stem are preserved in organotypic slice cultures.
    Löhrke S; Kungel M; Friauf E
    J Neurobiol; 1998 Sep; 36(3):395-409. PubMed ID: 9733074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of glutamate receptors in auditory neurons from long-term organotypic cultures of the embryonic chick hindbrain.
    Diaz C; Martinez-Galan JR; Juiz JM
    Eur J Neurosci; 2009 Jan; 29(2):213-30. PubMed ID: 19200228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.