BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 18356169)

  • 1. Diverging catalytic capacities and selectivity profiles with haloalkane substrates of chimeric alpha class glutathione transferases.
    Kurtovic S; Shokeer A; Mannervik B
    Protein Eng Des Sel; 2008 May; 21(5):329-41. PubMed ID: 18356169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate-activity mining for molecular quasi-species in a glutathione transferase mutant library.
    Kurtovic S; Runarsdottir A; Emrén LO; Larsson AK; Mannervik B
    Protein Eng Des Sel; 2007 May; 20(5):243-56. PubMed ID: 17468114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesign of substrate-selectivity determining modules of glutathione transferase A1-1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation.
    Nilsson LO; Gustafsson A; Mannervik B
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9408-12. PubMed ID: 10900265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling.
    Hansson LO; Bolton-Grob R; Massoud T; Mannervik B
    J Mol Biol; 1999 Mar; 287(2):265-76. PubMed ID: 10080890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of novel enzyme quasi-species depends on the substrate matrix.
    Kurtovic S; Shokeer A; Mannervik B
    J Mol Biol; 2008 Sep; 382(1):136-53. PubMed ID: 18640124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A homology model for rat mu class glutathione S-transferase 4-4.
    de Groot MJ; Vermeulen NP; Mullenders DL; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(1):28-40. PubMed ID: 8924604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I.
    Labrou NE; Kotzia GA; Clonis YD
    Protein Eng Des Sel; 2004 Oct; 17(10):741-8. PubMed ID: 15556969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting substrate specificity of human glutathione transferase (from class Pi to class alpha) by a single point mutation.
    Nuccetelli M; Mazzetti AP; Rossjohn J; Parker MW; Board P; Caccuri AM; Federici G; Ricci G; Lo Bello M
    Biochem Biophys Res Commun; 1998 Nov; 252(1):184-9. PubMed ID: 9813167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the subunit interface residues of alternatively spliced glutathione transferases affects catalytic and structural functions.
    Piromjitpong J; Wongsantichon J; Ketterman AJ
    Biochem J; 2007 Feb; 401(3):635-44. PubMed ID: 16938097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants.
    Widersten M; Mannervik B
    J Mol Biol; 1995 Jul; 250(2):115-22. PubMed ID: 7608963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed enzyme evolution guided by multidimensional analysis of substrate-activity space.
    Larsson AK; Emrén LO; Bardsley WG; Mannervik B
    Protein Eng Des Sel; 2004 Jan; 17(1):49-55. PubMed ID: 14985537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for catalytic differences between alpha class human glutathione transferases hGSTA1-1 and hGSTA2-2 for glutathione conjugation of environmental carcinogen benzo[a]pyrene-7,8-diol-9,10-epoxide.
    Singh SV; Varma V; Zimniak P; Srivastava SK; Marynowski SW; Desai D; Amin S; Ji X
    Biochemistry; 2004 Aug; 43(30):9708-15. PubMed ID: 15274625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic properties of glutathione-binding residues in a tau class glutathione transferase (PtGSTU1) from Pinus tabulaeformis.
    Zeng QY; Wang XR
    FEBS Lett; 2005 May; 579(12):2657-62. PubMed ID: 15862305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic and functional characterization of the fluorodifen-inducible glutathione transferase from Glycine max reveals an active site topography suited for diphenylether herbicides and a novel L-site.
    Axarli I; Dhavala P; Papageorgiou AC; Labrou NE
    J Mol Biol; 2009 Jan; 385(3):984-1002. PubMed ID: 19014949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering GST M2-2 for high activity with indene 1,2-oxide and indication of an H-site residue sustaining catalytic promiscuity.
    Norrgård MA; Mannervik B
    J Mol Biol; 2011 Sep; 412(1):111-20. PubMed ID: 21821040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation.
    Lisurek M; Simgen B; Antes I; Bernhardt R
    Chembiochem; 2008 Jun; 9(9):1439-49. PubMed ID: 18481342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization of alpha class subunits generating a functional glutathione transferase A1-4 heterodimer.
    Gustafsson A; Nilsson LO; Mannervik B
    J Mol Biol; 2002 Feb; 316(2):395-406. PubMed ID: 11851347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel quasi-species of glutathione transferase with high activity towards naturally occurring isothiocyanates evolves from promiscuous low-activity variants.
    Runarsdottir A; Mannervik B
    J Mol Biol; 2010 Aug; 401(3):451-64. PubMed ID: 20600121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26.
    Kmunícek J; Hynková K; Jedlicka T; Nagata Y; Negri A; Gago F; Wade RC; Damborský J
    Biochemistry; 2005 Mar; 44(9):3390-401. PubMed ID: 15736949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.