BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 18356314)

  • 1. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias.
    Brandström M; Ellegren H
    Genome Res; 2008 Jun; 18(6):881-7. PubMed ID: 18356314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences.
    Vowles EJ; Amos W
    Mol Biol Evol; 2006 Mar; 23(3):598-607. PubMed ID: 16301296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genomic portrait of human microsatellite variation.
    Payseur BA; Jing P; Haasl RJ
    Mol Biol Evol; 2011 Jan; 28(1):303-12. PubMed ID: 20675409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10.
    Anmarkrud JA; Kleven O; Bachmann L; Lifjeld JT
    BMC Evol Biol; 2008 May; 8():138. PubMed ID: 18471288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genomic landscape of short insertion and deletion polymorphisms in the chicken (Gallus gallus) Genome: a high frequency of deletions in tandem duplicates.
    Brandström M; Ellegren H
    Genetics; 2007 Jul; 176(3):1691-701. PubMed ID: 17507681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phylogenetic perspective on sequence evolution in microsatellite loci.
    Zhu Y; Queller DC; Strassmann JE
    J Mol Evol; 2000 Apr; 50(4):324-38. PubMed ID: 10795824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes.
    Ananda G; Hile SE; Breski A; Wang Y; Kelkar Y; Makova KD; Eckert KA
    PLoS Genet; 2014 Jul; 10(7):e1004498. PubMed ID: 25033203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum.
    Anderson TJ; Su XZ; Roddam A; Day KP
    Mol Ecol; 2000 Oct; 9(10):1599-608. PubMed ID: 11050555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between microsatellite slippage mutation rate and the number of repeat units.
    Lai Y; Sun F
    Mol Biol Evol; 2003 Dec; 20(12):2123-31. PubMed ID: 12949124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats.
    Kelkar YD; Strubczewski N; Hile SE; Chiaromonte F; Eckert KA; Makova KD
    Genome Biol Evol; 2010; 2():620-35. PubMed ID: 20668018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken.
    McConnell SK; Dawson DA; Wardle A; Burke T
    Anim Genet; 1999 Jun; 30(3):183-9. PubMed ID: 10442979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple levels of single-strand slippage at cetacean tri- and tetranucleotide repeat microsatellite loci.
    Palsbøll PJ; Bérubé M; Jørgensen H
    Genetics; 1999 Jan; 151(1):285-96. PubMed ID: 9872967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome wide survey and analysis of small repetitive sequences in caulimoviruses.
    George B; Gnanasekaran P; Jain SK; Chakraborty S
    Infect Genet Evol; 2014 Oct; 27():15-24. PubMed ID: 24999243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species.
    Prasad MD; Muthulakshmi M; Madhu M; Archak S; Mita K; Nagaraju J
    Genetics; 2005 Jan; 169(1):197-214. PubMed ID: 15371363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Survey and Analysis of Microsatellite Sequences in Bovid Species.
    Qi WH; Jiang XM; Du LM; Xiao GS; Hu TZ; Yue BS; Quan QM
    PLoS One; 2015; 10(7):e0133667. PubMed ID: 26196922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicrosatNavigator: exploring nonrandom distribution and lineage-specificity of microsatellite repeat motifs on vertebrate sex chromosomes across 186 whole genomes.
    Rasoarahona R; Wattanadilokchatkun P; Panthum T; Jaisamut K; Lisachov A; Thong T; Singchat W; Ahmad SF; Han K; Kraichak E; Muangmai N; Koga A; Duengkae P; Antunes A; Srikulnath K
    Chromosome Res; 2023 Sep; 31(4):29. PubMed ID: 37775555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsatellite and trinucleotide-repeat evolution: evidence for mutational bias and different rates of evolution in different lineages.
    Rubinsztein DC; Amos B; Cooper G
    Philos Trans R Soc Lond B Biol Sci; 1999 Jun; 354(1386):1095-9. PubMed ID: 10434312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of microsatellite loci in chicken and turkey.
    Reed KM; Mendoza KM; Beattie CW
    Genome; 2000 Oct; 43(5):796-802. PubMed ID: 11081969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned sequence in the transcriptome of vascular plants.
    Crane CF
    BMC Genomics; 2007 Jun; 8():173. PubMed ID: 17573970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsatellite development from genome skimming and transcriptome sequencing: comparison of strategies and lessons from frog species.
    Xia Y; Luo W; Yuan S; Zheng Y; Zeng X
    BMC Genomics; 2018 Dec; 19(1):886. PubMed ID: 30526480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.