BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18356320)

  • 1. Biotin deficiency affects the proliferation of human embryonic palatal mesenchymal cells in culture.
    Takechi R; Taniguchi A; Ebara S; Fukui T; Watanabe T
    J Nutr; 2008 Apr; 138(4):680-4. PubMed ID: 18356320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotin influences palatal development of mouse embryos in organ culture.
    Watanabe T; Dakshinamurti K; Persaud TV
    J Nutr; 1995 Aug; 125(8):2114-21. PubMed ID: 7643245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotin supply affects rates of cell proliferation, biotinylation of carboxylases and histones, and expression of the gene encoding the sodium-dependent multivitamin transporter in JAr choriocarcinoma cells.
    Crisp SE; Griffin JB; White BR; Toombs CF; Camporeale G; Said HM; Zempleni J
    Eur J Nutr; 2004 Feb; 43(1):23-31. PubMed ID: 14991266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP-dependent protein kinase in human embryonic palate mesenchymal cells.
    Greene RM; Lloyd MR; Pisano MM
    In Vitro Cell Dev Biol; 1992; 28A(11-12):755-62. PubMed ID: 1282915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teratogenic effects of maternal biotin deficiency on mouse embryos examined at midgestation.
    Watanabe T; Endo A
    Teratology; 1990 Sep; 42(3):295-300. PubMed ID: 2274895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDGF-C controls proliferation and is down-regulated by retinoic acid in mouse embryonic palatal mesenchymal cells.
    Han J; Xiao Y; Lin J; Li Y
    Birth Defects Res B Dev Reprod Toxicol; 2006 Oct; 77(5):438-44. PubMed ID: 17066417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical alterations in the palatal processes in fetuses of biotin-deficient mice.
    Watanabe T; Suzuki A; Ebara S; Negoro M; Fukui T
    Congenit Anom (Kyoto); 2010 Mar; 50(1):21-8. PubMed ID: 20201965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of human embryonic palatal mesenchymal cell cycle by secalonic acid D: a probable mechanism of its cleft palate induction.
    Dhulipala VC; Welshons WV; Reddy CS
    Orthod Craniofac Res; 2004 Nov; 7(4):227-36. PubMed ID: 15562586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species and strain differences in teratogenic effects of biotin deficiency in rodents.
    Watanabe T; Endo A
    J Nutr; 1989 Feb; 119(2):255-61. PubMed ID: 2918398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of p21 and cyclin E in normal and secalonic acid D-inhibited proliferation of human embryonic palatal mesenchymal cells.
    Dhulipala VC; Maddali KK; Ray BK; Welshons WV; Reddy CS
    Hum Exp Toxicol; 2011 Sep; 30(9):1222-32. PubMed ID: 20956459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secalonic acid D blocks embryonic palatal mesenchymal cell-cycle by altering the activity of CDK2 and the expression of p21 and cyclin E.
    Dhulipala VC; Maddali KK; Welshons WV; Reddy CS
    Birth Defects Res B Dev Reprod Toxicol; 2005 Jun; 74(3):233-42. PubMed ID: 15880679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotin supply affects expression of biotin transporters, biotinylation of carboxylases and metabolism of interleukin-2 in Jurkat cells.
    Manthey KC; Griffin JB; Zempleni J
    J Nutr; 2002 May; 132(5):887-92. PubMed ID: 11983808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-β activates c-Myc to promote palatal growth.
    Zhu X; Ozturk F; Liu C; Oakley GG; Nawshad A
    J Cell Biochem; 2012 Oct; 113(10):3069-85. PubMed ID: 22573578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.
    Yuasa M; Aoyama Y; Shimada R; Sawamura H; Ebara S; Negoro M; Fukui T; Watanabe T
    J Nutr Sci Vitaminol (Tokyo); 2016; 62(2):81-7. PubMed ID: 27264091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucocorticoid receptors in palatal mesenchymal cells from the human embryo: relevance to human cleft palate formation.
    Yoneda T; Pratt RM
    J Craniofac Genet Dev Biol; 1982; 1(4):411-23. PubMed ID: 7119095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Teratogenic effects of biotin deficiency in mice.
    Watanabe T
    J Nutr; 1983 Mar; 113(3):574-81. PubMed ID: 6827377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications.
    Clapper JD; Pearce ME; Guymon CA; Salem AK
    Biomacromolecules; 2008 Apr; 9(4):1188-94. PubMed ID: 18307307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K4, K9 and K18 in human histone H3 are targets for biotinylation by biotinidase.
    Kobza K; Camporeale G; Rueckert B; Kueh A; Griffin JB; Sarath G; Zempleni J
    FEBS J; 2005 Aug; 272(16):4249-59. PubMed ID: 16098205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental toxicity and structure-activity relationships of chlorophenols using human embryonic palatal mesenchymal cells.
    Zhao F; Mayura K; Hutchinson RW; Lewis RP; Burghardt RC; Phillips TD
    Toxicol Lett; 1995 Jun; 78(1):35-42. PubMed ID: 7604397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.