These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 18356321)
21. Maltase-glucoamylase inhibition potency and cytotoxicity of pyrimidine-fused compounds: An in silico and in vitro approach. Mehraban MH; Mansourian M; Ahrari S; HajiEbrahimi A; Odooli S; Motovali-Bashi M; Yousefi R; Ghasemi Y Comput Biol Chem; 2019 Oct; 82():25-36. PubMed ID: 31255972 [TBL] [Abstract][Full Text] [Related]
22. Interaction between the α-glucosidases, sucrase-isomaltase and maltase-glucoamylase, in human intestinal brush border membranes and its potential impact on disaccharide digestion. Tannous S; Stellbrinck T; Hoter A; Naim HY Front Mol Biosci; 2023; 10():1160860. PubMed ID: 36968271 [TBL] [Abstract][Full Text] [Related]
23. Selectivity of 3'-O-methylponkoranol for inhibition of N- and C-terminal maltase glucoamylase and sucrase isomaltase, potential therapeutics for digestive disorders or their sequelae. Eskandari R; Jones K; Rose DR; Pinto BM Bioorg Med Chem Lett; 2011 Nov; 21(21):6491-4. PubMed ID: 21924903 [TBL] [Abstract][Full Text] [Related]
25. Phylogenetic analysis reveals key residues in substrate hydrolysis in the isomaltase domain of sucrase-isomaltase and its role in starch digestion. Chaudet MM; Amiri M; Marth N; Naim HY; Rose DR Biochim Biophys Acta Gen Subj; 2019 Sep; 1863(9):1410-1416. PubMed ID: 31254546 [TBL] [Abstract][Full Text] [Related]
26. Starch source influences dietary glucose generation at the mucosal α-glucosidase level. Lin AH; Lee BH; Nichols BL; Quezada-Calvillo R; Rose DR; Naim HY; Hamaker BR J Biol Chem; 2012 Oct; 287(44):36917-21. PubMed ID: 22988246 [TBL] [Abstract][Full Text] [Related]
27. Structural Studies of the Intestinal α-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase. Rose DR; Chaudet MM; Jones K J Pediatr Gastroenterol Nutr; 2018 Jun; 66 Suppl 3():S11-S13. PubMed ID: 29762369 [TBL] [Abstract][Full Text] [Related]
28. Targeting N-Terminal Human Maltase-Glucoamylase to Unravel Possible Inhibitors Using Molecular Docking, Molecular Dynamics Simulations, and Adaptive Steered Molecular Dynamics Simulations. Zhang S; Wang Y; Han L; Fu X; Wang S; Li W; Han W Front Chem; 2021; 9():711242. PubMed ID: 34527658 [TBL] [Abstract][Full Text] [Related]
29. Dietary 5,6,7-Trihydroxy-flavonoid Aglycones and 1-Deoxynojirimycin Synergistically Inhibit the Recombinant Maltase-Glucoamylase Subunit of α-Glucosidase and Lower Postprandial Blood Glucose. Dong YS; Yu N; Li X; Zhang B; Xing Y; Zhuang C; Xiu ZL J Agric Food Chem; 2020 Aug; 68(33):8774-8787. PubMed ID: 32806121 [TBL] [Abstract][Full Text] [Related]
30. Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase. Lin AH; Hamaker BR; Nichols BL J Pediatr Gastroenterol Nutr; 2012 Nov; 55 Suppl 2():S43-5. PubMed ID: 23103656 [No Abstract] [Full Text] [Related]
31. Probing the intestinal α-glucosidase enzyme specificities of starch-digesting maltase-glucoamylase and sucrase-isomaltase: synthesis and inhibitory properties of 3'- and 5'-maltose-extended de-O-sulfonated ponkoranol. Eskandari R; Jones K; Reddy KR; Jayakanthan K; Chaudet M; Rose DR; Pinto BM Chemistry; 2011 Dec; 17(52):14817-25. PubMed ID: 22127878 [TBL] [Abstract][Full Text] [Related]
32. Phenolic compounds increase the transcription of mouse intestinal maltase-glucoamylase and sucrase-isomaltase. Simsek M; Quezada-Calvillo R; Nichols BL; Hamaker BR Food Funct; 2017 May; 8(5):1915-1924. PubMed ID: 28443839 [TBL] [Abstract][Full Text] [Related]
34. Studies on the intestinal disaccharidases of the pigeon. III. Separation, purification and properties of sucrase-isomaltase and maltase-glucoamylase. Prakash K; Patil SD; Hegde SN Arch Int Physiol Biochim; 1983 Dec; 91(5):379-90. PubMed ID: 6204606 [TBL] [Abstract][Full Text] [Related]
35. Human small intestinal maltase-glucoamylase cDNA cloning. Homology to sucrase-isomaltase. Nichols BL; Eldering J; Avery S; Hahn D; Quaroni A; Sterchi E J Biol Chem; 1998 Jan; 273(5):3076-81. PubMed ID: 9446624 [TBL] [Abstract][Full Text] [Related]
36. Conditioning with slowly digestible starch diets in mice reduces jejunal α-glucosidase activity and glucogenesis from a digestible starch feeding. Hasek LY; Avery SE; Chacko SK; Fraley JK; Vohra FA; Quezada-Calvillo R; Nichols BL; Hamaker BR Nutrition; 2020 Oct; 78():110857. PubMed ID: 32599415 [TBL] [Abstract][Full Text] [Related]
37. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). Ao Z; Quezada-Calvillo R; Sim L; Nichols BL; Rose DR; Sterchi EE; Hamaker BR FEBS Lett; 2007 May; 581(13):2381-8. PubMed ID: 17485087 [TBL] [Abstract][Full Text] [Related]
38. Purification and characterization of alpha-glucosidase complex from the intestine of the frog, Rana japonica. Takesue Y; Takesue S Biochim Biophys Acta; 1996 Sep; 1296(2):152-8. PubMed ID: 8814221 [TBL] [Abstract][Full Text] [Related]