These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 18356528)

  • 1. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity.
    Richardson AR; Libby SJ; Fang FC
    Science; 2008 Mar; 319(5870):1672-6. PubMed ID: 18356528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity.
    Richardson AR; Dunman PM; Fang FC
    Mol Microbiol; 2006 Aug; 61(4):927-39. PubMed ID: 16859493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus.
    Vitko NP; Spahich NA; Richardson AR
    mBio; 2015 Apr; 6(2):. PubMed ID: 25852157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Response of
    Favazzo LJ; Gill AL; Farnsworth CW; Mooney RA; Gill SR
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30782631
    [No Abstract]   [Full Text] [Related]  

  • 5. Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence.
    van Belkum A
    Curr Opin Infect Dis; 2006 Aug; 19(4):339-44. PubMed ID: 16804380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacologic augmentation of hypoxia-inducible factor-1alpha with mimosine boosts the bactericidal capacity of phagocytes.
    Zinkernagel AS; Peyssonnaux C; Johnson RS; Nizet V
    J Infect Dis; 2008 Jan; 197(2):214-7. PubMed ID: 18173364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced growth of Staphylococcus aureus after nitric oxide supplementation during simulated extracorporeal circulation.
    Melki V; Tran PK; Tano E; Knutson F; Borowiec JW
    Thorac Cardiovasc Surg; 2010 Mar; 58(2):81-5. PubMed ID: 20333569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence.
    Fuller JR; Vitko NP; Perkowski EF; Scott E; Khatri D; Spontak JS; Thurlow LR; Richardson AR
    Front Cell Infect Microbiol; 2011; 1():19. PubMed ID: 22919585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial evasion of innate host defenses--the Staphylococcus aureus lesson.
    Fedtke I; Götz F; Peschel A
    Int J Med Microbiol; 2004 Sep; 294(2-3):189-94. PubMed ID: 15493829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcal innate immune evasion.
    Rooijakkers SH; van Kessel KP; van Strijp JA
    Trends Microbiol; 2005 Dec; 13(12):596-601. PubMed ID: 16242332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets.
    Nizet V
    J Allergy Clin Immunol; 2007 Jul; 120(1):13-22. PubMed ID: 17606031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host-pathogen interaction.
    García-Lara J; Needham AJ; Foster SJ
    FEMS Immunol Med Microbiol; 2005 Mar; 43(3):311-23. PubMed ID: 15708304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary X-ray crystallographic analysis of a nitric oxide-inducible lactate dehydrogenase from Staphylococcus aureus.
    Dong JB; Liu X; Li LF; Wu S; Su XD
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Oct; 65(Pt 10):1053-5. PubMed ID: 19851020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host Nitric Oxide Disrupts Microbial Cell-to-Cell Communication to Inhibit Staphylococcal Virulence.
    Urbano R; Karlinsey JE; Libby SJ; Doulias PT; Ischiropoulos H; Warheit-Niemi HI; Liggitt DH; Horswill AR; Fang FC
    Cell Host Microbe; 2018 May; 23(5):594-606.e7. PubMed ID: 29706505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus.
    Holland DB; Bojar RA; Farrar MD; Holland KT
    FEMS Microbiol Lett; 2009 Jan; 290(2):149-55. PubMed ID: 19054079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases.
    Zecconi A; Scali F
    Immunol Lett; 2013 Feb; 150(1-2):12-22. PubMed ID: 23376548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence.
    Spahich NA; Vitko NP; Thurlow LR; Temple B; Richardson AR
    Mol Microbiol; 2016 Jun; 100(5):759-73. PubMed ID: 26851155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcus aureus evasion of innate antimicrobial defense.
    Kraus D; Peschel A
    Future Microbiol; 2008 Aug; 3(4):437-51. PubMed ID: 18651815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission?
    Massey RC; Horsburgh MJ; Lina G; Höök M; Recker M
    Nat Rev Microbiol; 2006 Dec; 4(12):953-8. PubMed ID: 17109032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expanded Glucose Import Capability Affords Staphylococcus aureus Optimized Glycolytic Flux during Infection.
    Vitko NP; Grosser MR; Khatri D; Lance TR; Richardson AR
    mBio; 2016 Jun; 7(3):. PubMed ID: 27329749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.