These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18357076)

  • 21. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.
    Houk AL; Givens RS; Elles CG
    J Phys Chem B; 2016 Mar; 120(12):3178-86. PubMed ID: 26962676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous wave two-photon scanning near-field optical microscopy.
    Kirsch AK; Subramaniam V; Striker G; Schnetter C; Arndt-Jovin DJ; Jovin TM
    Biophys J; 1998 Sep; 75(3):1513-21. PubMed ID: 9726953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses.
    Kawano H; Nabekawa Y; Suda A; Oishi Y; Mizuno H; Miyawaki A; Midorikawa K
    Biochem Biophys Res Commun; 2003 Nov; 311(3):592-6. PubMed ID: 14623311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo.
    Masters B; So P
    Opt Express; 2001 Jan; 8(1):2-10. PubMed ID: 19417779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-field imaging with a localized nonlinear light source.
    Palomba S; Novotny L
    Nano Lett; 2009 Nov; 9(11):3801-4. PubMed ID: 19697892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-enhanced two-photon-induced isomerization for highly-localized light-based actuation of inorganic/organic interfaces.
    Lim CK; Li X; Li Y; Drew KL; Palafox-Hernandez JP; Tang Z; Baev A; Kuzmin AN; Knecht MR; Walsh TR; Swihart MT; Ă…gren H; Prasad PN
    Nanoscale; 2016 Feb; 8(7):4194-202. PubMed ID: 26830974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Synthesis and spectral properties of stilbene derivatives as two-photon absorption materials].
    Guo FQ; Sun XL; Xiong F; Guo B; Liang H; Chen B; Zhang QJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2462-6. PubMed ID: 19950653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy.
    Yang MH; Abashin M; Saisan PA; Tian P; Ferri CG; Devor A; Fainman Y
    Opt Express; 2016 Dec; 24(26):30173-30187. PubMed ID: 28059294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-photon induced fluorescence of the calcium probe Indo-1.
    Szmacinski H; Gryczynski I; Lakowicz JR
    Biophys J; 1996 Jan; 70(1):547-55. PubMed ID: 8770232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser.
    Liu TM; Chu SW; Sun CK; Lin BL; Cheng PC; Johnson I
    Scanning; 2001; 23(4):249-54. PubMed ID: 11534811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A two-photon antenna for photochemical delivery of nitric oxide from a water-soluble, dye-derivatized iron nitrosyl complex using NIR light.
    Wecksler SR; Mikhailovsky A; Korystov D; Ford PC
    J Am Chem Soc; 2006 Mar; 128(11):3831-7. PubMed ID: 16536559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-photon-induced polarization-multiplexed and multilevel storage in photoisomeric copolymer film.
    Hu Y; Zhang Z; Chen Y; Zhang Q; Huang W
    Opt Lett; 2010 Jan; 35(1):46-8. PubMed ID: 20664668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical intensity mapping on the nanometer scale by near-field photodetection optical microscopy.
    Davis RC; Williams CC; Neuzil P
    Opt Lett; 1996 Apr; 21(7):447-9. PubMed ID: 19865434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of DNA photolesions by two-photon absorption of a frequency-doubled Ti:sapphire laser.
    Tycon MA; Chakraborty A; Fecko CJ
    J Photochem Photobiol B; 2011 Feb; 102(2):161-8. PubMed ID: 21146997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of Two-Photon eGFP Bleaching on Femtosecond Pulse Spectral Amplitude and Phase.
    Graham DJ; Tseng SF; Hsieh JT; Chen DJ; Alexandrakis G
    J Fluoresc; 2015 Nov; 25(6):1775-85. PubMed ID: 26411799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of near-infrared 35 fs laser microscope and its application to the detection of three- and four-photon fluorescence of organic microcrystals.
    Matsuda H; Fujimoto Y; Ito S; Nagasawa Y; Miyasaka H; Asahi T; Masuhara H
    J Phys Chem B; 2006 Jan; 110(3):1091-4. PubMed ID: 16471646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range.
    He GS; Yong KT; Zheng Q; Sahoo Y; Baev A; Ryasnyanskiy AI; Prasad PN
    Opt Express; 2007 Oct; 15(20):12818-33. PubMed ID: 19550551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films.
    Balling P; Schou J
    Rep Prog Phys; 2013 Mar; 76(3):036502. PubMed ID: 23439493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scanning near-field optical coherent anti-Stokes Raman microscopy (SNOM-CARS) with femtosecond laser pulses in vibrational and electronic resonance.
    Namboodiri M; Khan TZ; Bom S; Flachenecker G; Materny A
    Opt Express; 2013 Jan; 21(1):918-26. PubMed ID: 23388985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy.
    Yu H; Sun Q; Ueno K; Oshikiri T; Kubo A; Matsuo Y; Misawa H
    ACS Nano; 2016 Nov; 10(11):10373-10381. PubMed ID: 27775321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.