These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 18357167)

  • 1. Laboratory determination of beam-shape coefficients for use in generalized lorenz-mie theory.
    Polaert H; Gouesbet G; Gréhan G
    Appl Opt; 2001 Apr; 40(10):1699-706. PubMed ID: 18357167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of beam-shape coefficients in the generalized lorenz-mie theory for the on-axis case.
    Polaert H; Gouesbet G; Gréhan G
    Appl Opt; 1998 Jul; 37(21):5005-13. PubMed ID: 18285970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions.
    Doicu A; Wriedt T
    Appl Opt; 1997 May; 36(13):2971-8. PubMed ID: 18253301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration.
    Lock JA
    Appl Opt; 2004 Apr; 43(12):2532-44. PubMed ID: 15119623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2010 Nov; 1(5):1284-1301. PubMed ID: 21258549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: internal and external field distribution.
    Wang JJ; Gouesbet G; Han YP; Gréhan G
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jan; 28(1):24-39. PubMed ID: 21200408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid.
    Xu F; Ren K; Gouesbet G; Gréhan G; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):119-31. PubMed ID: 17164850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of reverse radiation pressure by generalized Lorenz-Mie theory.
    Ren KF; Gréhan G; Gouesbet G
    Appl Opt; 1996 May; 35(15):2702-10. PubMed ID: 21085418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward scattering of a Gaussian beam by a nonabsorbing sphere.
    Hodges JT; Gréhan G; Gouesbet G; Presser C
    Appl Opt; 1995 Apr; 34(12):2120-32. PubMed ID: 21037758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical force on a large sphere illuminated by Bessel beams: comparisons between ray optics method and generalized Lorenz-Mie theory.
    Song S; Wang N; Lu W; Lin Z
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2192-7. PubMed ID: 25401244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integral localized approximation in generalized lorenz-mie theory.
    Ren KF; Gouesbet G; Gréhan G
    Appl Opt; 1998 Jul; 37(19):4218-25. PubMed ID: 18285866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces.
    Ambrosio LA; Hernández-Figueroa HE
    Biomed Opt Express; 2011 Jul; 2(7):1893-906. PubMed ID: 21750767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory.
    Gouesbet G; Letellier C; Ren KF; Gréhan G
    Appl Opt; 1996 Mar; 35(9):1537-42. PubMed ID: 21085271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal and near-surface electromagnetic fields for a uniaxial anisotropic cylinder illuminated with a Gaussian beam.
    Zhang H; Huang Z; Shi Y
    Opt Express; 2013 Jul; 21(13):15645-53. PubMed ID: 23842350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates.
    Xu F; Ren K; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):109-18. PubMed ID: 17164849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Debye series for Gaussian beam scattering by a multilayered sphere.
    Li R; Han X; Shi L; Ren KF; Jiang H
    Appl Opt; 2007 Jul; 46(21):4804-12. PubMed ID: 17609730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination.
    Han Y; Gréhan G; Gouesbet G
    Appl Opt; 2003 Nov; 42(33):6621-9. PubMed ID: 14658463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Description and reconstruction of typical structured light beams with vector spherical wave functions.
    Shi Y; Cui Z; Liu Z; Ren S; Wu F
    Appl Opt; 2024 Mar; 63(9):2392-2403. PubMed ID: 38568595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of stresses on homogeneous spheroids in the optical stretcher computed with geometrical optics and generalized Lorenz-Mie theory.
    Boyde L; Ekpenyong A; Whyte G; Guck J
    Appl Opt; 2012 Nov; 51(33):7934-44. PubMed ID: 23207303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rigorous justification of a localized approximation to encode on-axis Gaussian acoustical waves.
    Gouesbet G; Ambrosio LA
    J Acoust Soc Am; 2023 Aug; 154(2):1062-1072. PubMed ID: 37606358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.